SYLLABUS

General information	Title and code of subject, number of credits	ETR 476 - Radio Transmitting and Antenna Devices – 6 ECTS				
mormation	Department Department	Physics and Electronics				
	Program	Bachelor				
	Academic semester	2023, spring				
	Lecturer	PhD in technical, Associate Prof. 1	Elchin Hasanov			
	E-mail:	elgafgas@yahoo.com				
	Phone number:					
	Lecture room/Schedule 11 Mehseti Street, AZ1096 Baku, Azerbaijan (Neftchilar ca					
		room Office hours: Saturday 14:00 – 15:00	1 //			
Prerequisites	ETR 234 – Analog and digital e					
Course	English					
language						
Type of the subject	Major					
Textbooks and	Textbooks:					
additional		tenna Theory, Analysis and Design.				
materials	2. Chuck Fung. Antenna basi					
	3. Richard C.Johnson. Anten	na Engineering Handbook , 1993				
Tanahina	Lastrina		T			
Teaching methods	Lecture Group discussions at seminars	2	X X			
Assessment	Components	Date/ Deadline	Percent (%)			
Assessment	Quiz	During the semester	5			
	Activity	At each lesson	5			
	Presentations	At the end of the semester	15			
	Attendance	At each lesson	5			
	Midterm exam		30			
	Final exam		40			
	Final		100			
Course description	This course introduces types of Antennas. Radiation Mechanism. Single wire. Wire configurations for radiation. Current distribution on a thin wire antenna. Beam efficiency. Bandwidth. Polarization. Input					
	impedance. Antenna radiation e	fficiency. Frequency independent anter	nnas , aperture antennas,			
	microstrip antennas, horn antenn					
		ineering principles of antennas will b				
		will be explored. The capabilities of t				
		nce criteria such as spatial and temporal ess of the methods will be illustrate				
		pective of the development of each anter				
	1 1 1	as. Finally, potentially new and emerging				
	will be considered.					
Course		course is to enable students to develop a				
objectives		nna theory and to apply them to the analy				
		so many methods of analysis and design				
	structures, applications are made to some of the most basic and practical configurations, such as linear dipoles; loops, arrays; broadband, and frequency-independent antennas; aperture antennas; horn					
	antennas; microstrip antennas ar		s, aperture antennas; nom			
Learning	What students should know b					
outcomes	· ·	-	gurations for radiation Current			
		Types of Antennas. Radiation Mechanism. Single wire. Wire configurations for radiation. Current distribution on a thin wire antenna. Beam efficiency. Bandwidth. Polarization. Input impedance.				
	Antenna radiation efficiency. Frequency independent antennas, aperture antennas, microstrip					
		as, reflector antennas . Antenna measurements: Antenna ranges. Radiation				
	-	rn. Gain measurement. Directivity easurements. Radiation efficiency. Impedance measurements.				
	Current measurements. Polarization measurements.					
Rules	Lesson organization					

(Educational policy and behavior)

General information on the subject will be provided for the students during lectures.

Student's knowledge on the previous topics will be evaluated and new topic will be explained by means of visual aids during seminars. Student's knowledge level will be tested orally and in written forms before midterm and final exams. Submission of the individual works by the end of course is obligatory.

Attendance

Participation of students at all classis is important. Students should inform dean's office about missing lessons for particular reasons (illness, family issues and etc.). Students, missing more than 25% of lessons, are not allowed to take the exam.

Lates

Those students who are late for lessons for more than 15 minutes are not allowed to participate at the lesson. Despite this, the student is allowed to take part in the second part of the lesson.

Ouiz

Those students who have informed the teacher and the dean's office about missing the test in advance for particular reasons, are allowed to take the test next week.

Presentations

The presentation will be held once during the semester at the end of the semester and will be evaluated with 15 points. The topic is chosen by the teacher and covers the topics covered in the lesson.

Activity

Students who will be active during discussion of past lessons will be awarded with one activity mark.

Exams

All the issues related to the participation and admission to the exam are regulated by the faculty dean. Topics of midterm and final exams are provided for the students before the exams. The questions of midterm exam are not repeated in the final exam.

Violation of the rules of the exams

Disrupting the test and taking copy during midterm and final exams is forbidden. Test papers of the student who do not follow these rules are canceled and the students are expelled from the test by getting 0 (zero).

The rule for completing the course

In accordance with the University rules the overall success rate to complete the course should be 60% or above. The students who failed the exam would be to take this subject next semester or next year.

Rules of conduct for Students

Disruption of the lesson and not following ethical norms during the lesson, as well as conduction of the discussions by the students without permission and using mobile phones is forbidden.

This program reflects the comprehensive information about the subject and information about any changes will be provided in advance.

Week	Dates (planned)	Subject topics	Textbook/ Assignments
1	14.02.20	Introduction. Types of Antennas. Radiation Mechanism. Single wire. Wire configurations for radiation. Two wires. Dipole. Current distribution on a thin wire antenna.	[1] p. 7-27 [2]
		Examination knowledges of students individually on the material of respective lecture. Analysis the lecture material in details. Solving problems.	[1] p.2-2
2	21.02.20	Fundamental parameters of antennas.Radiation Pattern. Radiation Power Density.Radiation intensity . Beamwidth. Directivity.Numerical techniques. Antenna Efficiency.Gain.	[1] p.27-69 [3]
		Examination knowledges of students individually on the material of respective lecture. Analysis the lecture material in details. Solving problems.	[1] p.
3	28.02.20	Beam efficiency. Bandwidth. Polarization. Input impedance. Antenna radiation efficiency. Antenna vector effective length and equivalent areas. Maximu directivity and maximum effective area.Friis transmission Equation and Radar Range equation. Antenna temperature.	[1] p.69-95
		Examination knowledges of students individually on the material of respective lecture. Analysis the lecture material in details. Solving problems.	[1] p.

4 06.03.20		Linear wire Antennas. Infinitesimal Dipole. Small Dipole. Region separation. Finite	[1] p. 151-205
		length dipole. Half-wavelength dipole. Linear elements near or on infinite perfect conductors. Ground effects.	[3]
		Examination knowledges of students individually on the material of respective lecture. Analysis the lecture material in details. Solving problems.	[3]
5	13.03.20		
		with nonuniform current. Ground and Earth curvature efffects for circular loops. Polygonal loop antennas. Ferrite loop antennas. Mobile communication systems applications.	[3]
		Examination knowledges of students individually on the material of respective lecture. Analysis the lecture material in details. Solving problems.	[1] p.
6	27.03.20	Linear, planar and circular arrays. Two-element array. N-element linear	[1] p.283-320
		array:Uniform amplitude and spacing. Directivity.Design procedure. Three-dimensional characteristics.	
		Examination knowledges of students individually on the material of respective lecture. Analysis the lecture material in details. Solving problems.	[1] p.322-365
		Rectangular-to-Polar Graphical solution.N-element linear array:Uniform spacing.Nonuniform amplitude .Superconductivity. Planar array.Design considerations.Circular array.	
7	03.04.20	Continuous sources.Schelkunoff Polynomial method. Fourier Transform	[1] p.385-419
		method.Woodward-Lawson Method. Taylor-line-source. Triangular, cosine, and cosine-squared amplitude distributions.Line-source phase distributions.Continuous aperture sources.	[3]
		Examination knowledges of students individually on the material of respective lecture. Analysis the lecture material in details. Solving problems.	[1] p.
8	10.04.20	Integral equation method.Finite diameter wires. Moment method solution. Self impedance. Mutual impedance between linear elements.Mutual coupling in arrays.	[1] p.433-478
		Examination knowledges of students individually on the material of respective lecture. Analysis the lecture material in details. Solving problems.	[1] p.
9	17.04.20	Mid term exam	
10	24.04.20	Broadband dipoles ands matching techniques.Biconical antenna. Triangular sheet,bow-tie and wire simulation.Cylindrical dipole.Folded dipole.Discone and Conical Skirt Monopole.Matching techniques. Traveling wave antennas. Broadband antennas.	[1] p.497-556 [3]
		Examination knowledges of students individually on the material of respective lecture. Analysis the lecture material in details. Solving problems.	[1] p.
11	01.05.20	Frequency independent antennas. Theory. Equiangular Spiral antennas. Log-periodic antennas. Fundamental limits of electrically small antennas. Fractal antennas.	[1] p.611-641
		Examination knowledges of students individually on the material of respective lecture. Analysis the lecture material in details. Solving problems.	[2] p.
12	08.05.20	Aperture antennas. Field equivalence principle: Huygens' principle. Radiation equation. Directivity. Recangular apertures. Circular apertures. Design	[1] p.653-701

		considerations. Babinet's principle. Fourier transforms in aperture antenna theory.	
		Ground plane.	
		Ground prane.	
		Examination knowledges of students individually on the material of respective	
		lecture. Analysis the lecture material in details.	
		Solving problems.	
13	15.05.20	Horn antennas. E-plane sectoral horn. H-plane sectoral horn. Pyramidal horn.	[1] p.739-799
		Conical horn. Corrygated horn. Aperture-atched horns. Multimode horns. Dielectric	
		loaded horns. Phase center.	
		Examination knowledges of students individually on the material of respective	[2] p.
		lecture. Analysis the lecture material in details.	
		Solving problems.	
14	22.05.20	Microstrip antennas. Rectangular patch. Circular patch. Quality factor, bandwith,	[1] p.811-865
		efficiency. Input impedance. Coupling. Circular polarization. Arrays and feed	
		networks.	
			ran
		Examination knowledges of students individually on the material of respective	[2] p.
		lecture. Analysis the lecture material in details.	
15	20.05.20	Solving problems.	[1] 002 050
15	29.05.20	Reflector antennas. Plane reflector. Corner reflector. Parabolic reflector. Spherical	[1] p.883-958
		reflector. Smart antennas. Sartr-antenna analogy. Cellular radio systems evolution. Signal propagation. Antenna beamforming.	
		Signal propagation. Afternia dearmorning.	
		Examination knowledges of students individually on the material of respective	[1] p.
		lecture. Analysis the lecture material in details.	<u>*</u>
		Solving problems.	
		Final Exam	

