General	Title and code of subject, number of	f credits ETR 320 Digital Electr	ETR 320 Digital Electronics & Microprocessors, 6			
mormation		ECTS				
	Department	Physics and Electronic	Physics and Electronics			
	Program	Bachelor				
	Academic semester					
	Lecturer	Master of Science (Ele	ctronics Engineering)			
	F-mail.	s ganiyey@gmail.com				
	Dhono numboni	<u>1004 77 520 73 50</u>				
	Filone number:	11 Mahaati Streat A7	1006 Datus Azarbaijan			
	Lecture room/Schedule	(Neftchilar campus), re	oom			
	Consultations	Saturday 13:00 – 14:00)			
Course language	English	<u> </u>				
Type of the	Major					
subject						
Textbooks and	Textbooks:					
additional	1. Digital Fundamentals, Thomas L. F	1. Digital Fundamentals, Thomas L. Floyd, Pearson Education, 11th edition, 2015				
materials	2. Intel Microprocessors, Brey, Barry B., Prentice Hall, 2014					
	Optional Reference Texts:	Optional Reference Texts:				
	3. Digital Design, M. Morris Mano and Michael D. Ciletti, Pearson, 6th edition, 2021					
	4. Digital Electronics: Principles and Applications, Roger L. Tokheim, McGraw Hill, 9th edition,					
	2022 5. Fundamentals of digital logic with Varilog design S.D. Brown, McGrow Hill Education, 3 rd					
	Edition, 2014					
Teaching methods	Lecture		+			
0	Group discussions at seminars		+			
Assessment	Components	Date/ Deadline	Percent (%)			
	Active participation	At each lesson	5			
	Quizzes	During the semester	20			
	Attendance	At each lesson	5			
	Midterm exam		30			
	Final exam		40			
	Final		100			
Course	This course introduces the fundament	al principles and applications of d	ligital electronics. Students will			
description	gain knowledge of digital systems, log	gic gates, Boolean algebra, combi	national and sequential circuits,			
	memory technologies, and digital design methodologies. The course emphasizes both theoretical					
Course objectives	The main number of the subject "Disi	tion through hands-on laboratory v	VOFK.			
Course objectives	devices and programmable integrated	d circuits which are the main of	components of the control and			
	management systems of production p	rocesses in the fields of energy n	roduction and consumption by			
	management systems of production processes in the fields of energy production and consumption, by students studying "Radio engineering and telecommunication engineering" and to form their					
	professional skills in this field, gaining	g knowledge and practical experie	nce.			
Learning	What students should know by the e	end of the course:				
outcomes	• Fundamentals of digital electric	ronics and its applications.				
	• Analyze and design combinat	tional and sequential logic circuits				
	Boolean algebra and logic sin	nplification techniques.				
	 Utilize computer-aided design (CAD) tools for digital circuit design. 					
	 Implementation of digital circuits using standard integrated circuits (ICs). 					
	• Structure of microprocessor:	CPU, memory, and input/output p	eripherals.			
	• Main components and working	ng principles of the Intel 80x86 mi	croprocessor.			
	 Basics of assembly language. 					
	They should be able to:	They should be able to:				
	• Using digital electronic devices and programmable integrated circuits;					
	• Determination of basic technical parameters of microprocessors;					
	• Application of microprocessors in automation, monitoring and measuring devices,					
	telecommunications;					
	• Realization and application of combination devices, digital switches-multiplexers and demultiplexers in small and medium integrated microcircuits.					

Rules		Lesson organization	
(Educati	onal	General information on the subject will be provided for the students during lectures.	
policy an	ıd	Student's knowledge on the previous topics will be evaluated and new topic will be	explained by mins
behavior	·)	of visual aids during seminars. Student's knowledge level will be tested oraly an	d in written forms
		before midterm and final exams. Submission of the individual works by the end of co	ourse is obligatory.
		Attendance	
		Participation of students at all classis is important. Students should inform dean's off	fice about missing
		lessons for particular reasons (illness, family issues and etc.). Students, missing mor	e than 25% of
		lessons, are not allowed to take the exam. Students who attend the whole class	es will get 5
		marks. For two absence student loses 1 mark.	0
		Lates	
		Those students who are late for lessons for more than 15 minutes to class will	be marked absent.
		despite this, the student can still attend the class.	,
		Ouizzes	
		Those students who have informed the teacher and the dean's office about missing t	he quiz in advance
		for particular reasons, are allowed to take the guiz next week.	1
		Exams	
		All the issues related to the participation and admission to the exam are regulated by	the faculty dean.
		Topics of midterm and final exams are provided for the students before the exams	. The questions of
		midterm exam are not repeated in the final exam.	1
		Violation of the rules of the exams	
		Disrupting the quiz and taking copy during midterm and final exams is forbidden.	Quiz papers of the
		student who do not follow these rules are canceled and the students are expelled	from the quiz by
		getting 0 (zero).	
		The rule for completing the course	
		In accordance with the University rules the overall success rate to complete the cou	rse should be 60%
		or above. The students who failed the exam would be to take this subject next semest	ter or next year.
		Rules of conduct for Students	-
		Disruption of the lesson and not following ethical norms during the lesson, as well a	s conduction of the
		discussions by the students without permission and using mobile phones is forbidden	l.
		Quizzes	
		Quizzes will be held 4 times during the semester The quizzes will be announced in the	classroom two
		weeks before. Quiz is from homework problems.	
		The homework problems will be selected from questions and problems in the end.	
		of each chapter. The No. of homework problems will be announced after finishing each chapter.	
		Activity	
		Students who will be active during discussion of past lessons will be awarded	with one activity
		mark.	
Week	Dates	Subject topics	Textbook/

Week	Dates	Subject topics	Textbook/
	(planned)		Assignments
1		Introductory Concepts: Digital and Analog Quantities, Binary Digits, Logic Levels, and Digital Waveforms, Basic Logic Functions, Combinational and Sequential Logic Functions, Introduction to Programmable Logic, Fixed-Function Logic Devices. Questions and Exercises	[1]
2		Number Systems, Operations, and Codes: Decimal Numbers, Binary Numbers, Decimal-to-Binary Conversion, Binary Arithmetic, Complements of Binary Numbers, Signed Numbers, Arithmetic Operations with Signed Numbers, Hexadecimal Numbers, Octal Numbers, Binary Coded Decimal (BCD), Digital Codes, Error Codes. Questions and Exercises	[1]
3		Logic Gates: The Inverter, The AND Gate, The OR Gate, The NAND Gate, The NOR Gate, The Exclusive-OR and Exclusive-NOR Gates, Programmable Logic, Fixed-Function Logic Gates. Questions and Exercises	[1]
4		<i>Boolean Algebra and Logic Simplification:</i> Boolean Operations and Expressions, Laws and Rules of Boolean Algebra, DeMorgan's Theorems, Boolean Analysis of Logic Circuits, Logic Simplification Using Boolean Algebra, Standard Forms of Boolean Expressions, Boolean Expressions and Truth Tables, The Karnaugh Map, Karnaugh Map SOP Minimization, Karnaugh Map POS Minimization, The Quine-McCluskey Method.	[1]

	Questions and Exercises	
5	Combinational Logic Analysis: Basic Combinational Logic Circuits, Implementing Combinational Logic, The Universal Property of NAND and NOR gates, Combinational Logic Using NAND and NOR Gates, Pulse Waveform Operation, Combinational Logic with VHDL. Quiz 1	[1]
6	<i>Functions of Combinational Logic:</i> Half and Full Adders, Parallel Binary Adders, Ripple Carry and Look-Ahead Carry Adders, Comparators, Decoders, Encoders, Code Converters, Multiplexers (Data Selectors), Demultiplexers, Parity Generators/Checkers. <i>Questions and Exercises</i>	[1]
7	Latches, Flip-Flops, and Timers: Latches, Flip-Flops, Flip-Flop Operating Characteristics, Flip-Flop Applications, One-Shots, The Astable Multivibrator. Questions and Exercises	[1]
8	<i>Shift Registers:</i> Shift Register Operations, Types of Shift Register Data I/Os, Shift Registers, Shift Register Counters, Shift Register Applications, Logic Symbols with Dependency Notation . <i>Quiz 2</i>	[1]
9	Mid term exam	
10	<i>Counters:</i> Finite State Machines, Asynchronous Counters, Synchronous Counters, Up/Down Synchronous Counters, Design of Synchronous Counters, Cascaded Counters, Counter Decoding, Counter Applications, Logic Symbols with Dependency Notation. <i>Questions and Exercises.</i>	[1]
11	<i>Programmable Logic:</i> Simple Programmable Logic Devices (SPLDs), Complex Programmable Logic Devices (CPLDs), Macrocell Modes, Field-Programmable Gate Arrays (FPGAs), Programmable Logic software, Scan Logic.	[1]
	Questions and Exercises.	[-]
12	Data Storage:Semiconductor Memory Basics, The Random-Access Memory (RAM), The Read-Only Memory (ROM), Programmable ROMs, The Flash Memory, Memory Expansion, Special Types of Memories, Magnetic and Optical Storage, Memory Hierarchy, Cloud Storage. Quiz 3	[1]
13	<i>Introduction to microprocessors:</i> Microprocessor. Evolution of microprocessors. Organization of microcomputers. Microprocessor programming. Timing diagram conventions. <i>Questions and Exercises</i>	[2]
14	Intel 8086: Internal architecture of Intel 8086. Flag Register. The BIU. Real Mode Memory Addressing. Introduction to protected mode memory addressing. Memory paging. Pin diagram of 8086. Clock generator. Questions and Exercises	[2]
15	Intel 8086: Instructions. Quiz 4	[2]
	Final Exam	

-FAC