| Identification        | Subject                                                                                                                                                                    | ETR                      | 615 Digital Signal Processing 8 cro | edits                 |  |  |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------------------------|-----------------------|--|--|
|                       | (Code, title, credits)                                                                                                                                                     |                          |                                     |                       |  |  |
|                       | Department                                                                                                                                                                 | Phys                     | sics and Electronics                |                       |  |  |
|                       | Program                                                                                                                                                                    | Postgraduate             |                                     |                       |  |  |
|                       | Term                                                                                                                                                                       | Fall                     | , 2023                              |                       |  |  |
|                       | Instructor                                                                                                                                                                 | MSc, MIET, Alim Huseynov |                                     |                       |  |  |
|                       | E-mail:                                                                                                                                                                    |                          | n.Huseynov@gmail.com                |                       |  |  |
|                       | Phone:                                                                                                                                                                     |                          | 455 425 3599                        |                       |  |  |
|                       | Classroom/hours                                                                                                                                                            | 11 N                     | Mehseti str. (Neftchilar campus)    |                       |  |  |
|                       | Office hours                                                                                                                                                               |                          | day-Friday, from 9:00 to 18:00      |                       |  |  |
| Prerequisites         |                                                                                                                                                                            |                          |                                     |                       |  |  |
| Language              | English                                                                                                                                                                    |                          |                                     |                       |  |  |
| Compulsory / elective | Elective                                                                                                                                                                   |                          |                                     |                       |  |  |
| Required textbooks    | Textbooks:                                                                                                                                                                 |                          |                                     |                       |  |  |
| andcourse             | Digital Signal Processing, Fundamentals and Applications, Lizhe Tan, Jean Jiang.                                                                                           |                          |                                     |                       |  |  |
| materials             |                                                                                                                                                                            |                          |                                     |                       |  |  |
|                       | 2. Discrete Systems and Digital Signal Processing with MATLAB, Taan S. ElAli.                                                                                              |                          |                                     |                       |  |  |
|                       | 3. Digital Signal Processing, Using MATLAB, Fourth Edition, V. K. Ingle, J.G. Proakis.                                                                                     |                          |                                     |                       |  |  |
| Course outline        |                                                                                                                                                                            |                          |                                     |                       |  |  |
| Course outline        | Technology such as microprocessors, microcontrollers, and digital signal processors                                                                                        |                          |                                     |                       |  |  |
|                       | have become so advanced that they have had a dramatic impact on the disciplines of                                                                                         |                          |                                     |                       |  |  |
|                       | electronics engineering, computer engineering, and biomedical engineering.                                                                                                 |                          |                                     |                       |  |  |
|                       | Engineers and technologists need to become familiar with digital signals and systems and basic digital signal processing (DSP) techniques. The objective of this course is |                          |                                     |                       |  |  |
|                       | to introduce students to the fundamental principles of these subjects and to provide a                                                                                     |                          |                                     |                       |  |  |
|                       | working knowledge such that they can apply DSP in their engineering careers. This                                                                                          |                          |                                     |                       |  |  |
|                       | course prepares the students with the knowledge of digital signal processing and their                                                                                     |                          |                                     |                       |  |  |
|                       | application in digital data manipulation. It develops the analytical ability for                                                                                           |                          |                                     |                       |  |  |
|                       | designing various digital signal processing systems and familiarizes the students with                                                                                     |                          |                                     |                       |  |  |
|                       | various practical applications of these systems                                                                                                                            |                          |                                     |                       |  |  |
| Course objectives     | To introduce students basic techniques in designing and implementing digital signal                                                                                        |                          |                                     |                       |  |  |
|                       | processing                                                                                                                                                                 |                          |                                     |                       |  |  |
|                       | systems.                                                                                                                                                                   |                          |                                     |                       |  |  |
|                       | To learn basic methods of spectral analysis.                                                                                                                               |                          |                                     |                       |  |  |
|                       | To explore data communication systems.                                                                                                                                     |                          |                                     |                       |  |  |
|                       | To teach students to design digital filters.                                                                                                                               |                          |                                     |                       |  |  |
| Learning outcomes     |                                                                                                                                                                            |                          |                                     |                       |  |  |
| Learning outcomes     | To learn about mathematical representation of analog signals in digital domain,                                                                                            |                          |                                     |                       |  |  |
|                       | manipulate signals using analytical techniques and familiarize with discrete time signal & systems.                                                                        |                          |                                     |                       |  |  |
|                       |                                                                                                                                                                            | nation                   | of discrete time signals by means   | of frequency domain   |  |  |
|                       | To interpret the information of discrete time signals by means of frequency domain analysis using mathematical tools such as Z-transform, Discrete Fourier Transform       |                          |                                     |                       |  |  |
|                       | (DFT), Fast Fourier Tr                                                                                                                                                     |                          |                                     | te i ourier fransform |  |  |
|                       |                                                                                                                                                                            |                          | ponses of discrete-time systems lik | e FIR and IIR Filter  |  |  |
|                       | etc.                                                                                                                                                                       | 10 108                   | polices of discrete-time systems in | C THE AND THE THE     |  |  |
| Teaching methods      | Lecture $lacksquare$                                                                                                                                                       |                          |                                     |                       |  |  |
|                       | Group discussion                                                                                                                                                           |                          |                                     |                       |  |  |
|                       | Experiential exercise                                                                                                                                                      |                          |                                     | <u>✓</u>              |  |  |
|                       | Quiz, Classroom Exams                                                                                                                                                      |                          |                                     | <b>☑</b>              |  |  |
| <b>Evaluation</b>     | Methods                                                                                                                                                                    |                          | Date/deadlines                      | Percentage (%)        |  |  |
| _ raidad VII          | Wicthous                                                                                                                                                                   | •                        | Date/ deddines                      | i di contage (70)     |  |  |

| Midterm Exam |                     | 30  |
|--------------|---------------------|-----|
| Attendance   | At each lesson      | 5   |
| Quizzes      | During the semester | 20  |
| Activity     | During the semester | 5   |
| Final Exam   |                     | 40  |
| Total        |                     | 100 |

# **Policy**

# Preparation for class

The structure of this course makes your individual study and preparation outside the class extremely important. The lecture material will focus on the major points introduced in the text. Reading the assigned chapters and having some familiarity with them before class will greatly assist your understanding of the lecture. After the lecture, you should study your notes and work relevant problems and cases from the end of the chapter and sample exam questions.

# • Withdrawal (pass/fail)

This course strictly follows grading policy of the School of Humanities, Education and Social sciences. Thus, a student is normally expected to achieve a mark of at least 60% to pass. In case of failure, he/she will be required to repeat the course thefollowing term or year.

# Cheating/plagiarism

Cheating or other plagiarism during the Quizzes, Mid-term and Final Examinations will lead to paper cancellation. In this case, the student will automatically get zero (0), without any considerations.

# Professional behavior guidelines

The students shall behave in the way to create favorable academic and professional environment during the class hours. Unauthorized discussions and unethical behavior are strictly prohibited.

# Attendance

Students who attend the whole classes will get 5 marks. for three absence student loses 1 mark.

#### Quizzes

There will be a quizzes per two weeks. The quizzes will be announced in the classroom two weeks before and will relate to homework.

# • Activity

Students who will be active during discussion of past lessons will be awarded with one activity mark.

|      | Tentative Schedule |                                                                                                                                                                                                     |                                                                   |  |  |  |
|------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--|--|--|
| Week | Dates              | Topics                                                                                                                                                                                              | Textbook/<br>Assignments                                          |  |  |  |
| 1.   | 19-09-23           | Lecture 1. Introduction to digital Signal processing and to Matlab programming Seminar 1. Solving exercising and Matlab scripting                                                                   | [1] – pages 1-12 and App A<br>[3] – pages 1-21                    |  |  |  |
| 2.   | 26-09-23           | Lecture 2. Signal sampling and Quantization Seminar 2. Solving exercising and Matlab scripting                                                                                                      | [1] – pages 13-58                                                 |  |  |  |
| 3.   | 03-10-23           | Lecture 3. Digital Signals and Systems Seminar 3. Solving exercising and Matlab scripting                                                                                                           | [1] – pages 59-90<br>[2] – pages 55-64<br>[3] – pages 22-58       |  |  |  |
| 4.   | 10-10-23           | Lecture 4. Discrete Fourier Transform and Signal Spectrum Seminar 4. Solving exercising and Matlab scripting                                                                                        | [1] – pages 91-137<br>[2] – pages 143-195<br>[3] – pages 59-102   |  |  |  |
| 5.   | 17-10-23           | Lecture 5. The z-Transform Seminar 5. Solving exercising and Matlab scripting                                                                                                                       | [1] – pages 143-168<br>[2] – pages 195-264<br>[3] – pages 103-140 |  |  |  |
| 6.   | 24-10-23           | Lecture 6. Digital Signal Processing Systems, Basic Filtering Types, and Digital Filter Realizations Seminar 6. Solving exercising and Matlab scripting                                             | [1] – pages 173-219<br>[3] – pages 212-291                        |  |  |  |
| 7.   | 31-10-23           | Lecture 7. Finite Impulse Response Filter Design<br>Seminar 7. Solving exercising and Matlab scripting                                                                                              | [1] – pages 229-306<br>[2] – pages 591-648<br>[3] – pages 291-369 |  |  |  |
| 8.   | 07-11-23           | Lecture 8. Infinite Impulse Response Filter Design<br>Seminar 8. Solving exercising and Matlab scripting                                                                                            | [1] – pages 316-407<br>[2] – pages 541-590<br>[3] – pages 370-457 |  |  |  |
| 9.   | 14-11-23           | Mid-term exam                                                                                                                                                                                       |                                                                   |  |  |  |
| 10.  | 21-11-23           | Lecture 9. Adaptive Filters and Applications Seminar 9. Solving exercising and Matlab scripting                                                                                                     | [1] – pages 421-465<br>[3] – pages 573-586                        |  |  |  |
| 11.  | 28-11-23           | Lecture 10. Waveform Quantization and Compression<br>Seminar 10. Solving exercising and Matlab scripting                                                                                            | [1] – pages 475-521                                               |  |  |  |
| 12.  | 05-12-23           | Lecture 11. Multi-rate Digital Signal Processing,<br>Oversampling of analog-to-digital Conversion, and<br>Undersampling of Bandpass signals.<br>Seminar 11. Solving exercising and Matlab scripting | [1] – pages 529-590                                               |  |  |  |
| 13.  | 12-12-23           | Lecture 12. Subband and Wavelet-Based Coding Seminar 12. Solving exercising and Matlab scripting                                                                                                    | [1] – pages 591-641                                               |  |  |  |
| 14.  | 19-12-23           | Lecture 13. Image Processing Basics Seminar 13. Solving exercising and Matlab scripting                                                                                                             | [1] – pages 650-714                                               |  |  |  |
| 15.  | 26-12-23           | Lecture 14. Hardware and Software for Digital Signal Processors Seminar 14. Solving exercising and Matlab scripting                                                                                 | [1] – pages 727-782                                               |  |  |  |
|      |                    | Final Exam                                                                                                                                                                                          |                                                                   |  |  |  |

This syllabus is a guide for the course and any modifications to it will be announced in advance.

