General	Title and code of subject,	ETR476 Radio Transmitting and Antenna Devices 6 ECTS		
information	number of credits			
	Department	Physics and Electronics		
	Program	Bachelor		
	Academic semester	2022. spring		
	Lecturer	PhD, Associate Prof. Elchin	Hasanov	
	E-mail:	elgafgas@yahoo.com		
	Phone number:	4217927 (255)		
	Lecture room/Schedule	11 Mehseti Street, AZ1096 Baku. Azerbaijan (Neftchilar		
		campus), room		
D		Office hours: Wednesday 14:00	- 15:00	
Prerequisites	ETR 234 - Analog and digital ele	ctronics		
Course	English			
Tanguage				
subject	Major			
Textbooks and	Textbooks:			
additional	1. Constantine A. Balanis Anter	nna Theory, Analysis and Desig	gn.	
materials	2. Chuck Fung. Antenna basic theory, 2011			
	3. Richard C.Johnson. Antenna	a Engineering Handbook, 1993		
Teaching	Lecture		Х	
methods	Group discussions at seminars		Х	
Assessment	Components	Date/ Deadline	Percent (%)	
	Quizzes	During the semester	5	
	Active participation	At each lesson	5	
	Individual research papers	At the end of the semester	15	
	and presentations			
	Attendance	At each lesson	5	
	Nildterm exam		30	
	Final exam		40	
Course	This course introduces types	of Antonnog Dediction Mach	100 Anniem Single wire Wire	
description	configurations for radiation Cur	rent distribution on a thin wire	antenna Beam efficiency	
uescription	Bandwidth Polarization Input	impedance Antenna radiatio	on efficiency Frequency	
	independent antennas aperture	e antennas, microstrip antenna	s. horn antennas, reflector	
	antennas.	· ····································		
	The basic physical and engineer	ring principles of antennas will be	e described, and their relative	
	advantages and disadvantages wil	l be explored. The capabilities of	f the imaging techniques will	
	be explained in terms of performa	nce criteria such as spatial and t	emporal resolution, contrast,	
	and signal-to-noise-ratio. The effe	ectiveness of the methods will b	e illustrated in terms of their	
	clinical applications. An historica	al perspective of the development	nt of each antenna technique	
0	will be presented, as well as the la	atest innovations.	1 1 1 0 11 1. 1.1	
Course	The main objective of this co	urse is to enable students to deve	elop a basic familiarity with	
objectives	measurements of antennas Beca	use there are so many methods.	of analysis and design and a	
	neasurements of antenna structures an	nlications are made to some of	the most basic and practical	
	configurations such as linear dir	poles: loops, arrays · broadband	and frequency-independent	
	antennas, aperture antennas, horn antennas, microstrin antennas and reflector antennas			
Learning	What students should know by	the end of the course:		
outcomes	- Types of Antennas. Radiation	Mechanism		
	- Linear wire Antennas, Infinitesimal Dipole, Small Dipole			
	- Linear planar and circular arrays Two-element array			
	- Linear, planar and circular arrays. Two-element array.			
1	- integral equation method.Finite	urameter wires. Woment metho	u solution.	

	- Aperture antennas. Field equivalence principle: Huygens' principle			
	- Broadband dipoles and matching techniques. Biconical antennas			
Rules	Lesson organization			
(Educational	General information on the subject will be provided for the students during lectures.			
policy and	Student's knowledge on the previous topics will be evaluated and new topic will be explained			
behavior)	by means of visual aids during seminars. Student's knowledge level will be tested orally and in			
	written forms before midterm and final exams. Submission of the individual works by the end			
	of course is obligatory.			
	Attendance			
	Participation of students at all classis is important. Students should inform dean's office about			
	then 25% of lossons, are not allowed to take the every			
	Lates			
	Those students who are late for lessons for more than 15 minutes are not allowed to participate			
	at the lesson. Despite this, the student is allowed to take part in the second part of the lesson.			
	Tests			
	Those students who have informed the teacher and the dean's office about missing the test in			
	advance for particular reasons, are allowed to take the test next week.			
	Exams			
	All the issues related to the participation and admission to the exam are regulated by the			
	faculty dean.			
	Topics of midterm and final exams are provided for the students before the exams. The			
	questions of midterm exam are not repeated in the final exam.			
	Violation of the rules of the exams			
	of the student who do not follow these rules are canceled, and the students are expelled from			
	the test by getting 0 (zero)			
	The rule for completing the course			
	In accordance with the University rules the overall success rate to complete the course should			
	be 60% or above. The students who failed the exam would be to take this subject next semester			
	or next year.			
	Rules of conduct for Students			
	Disruption of the lesson and not following ethical norms during the lesson, as well as			
	conduction of the discussions by the students without permission and using mobile phones is			
	forbidden.			

This program reflects the comprehensive information about the subject and information about any changes will be provided in advance.

Week	Dates	Subject topics	Textbook/
	(planned)		Assignments
1	19.02.22	Introduction. Types of Antennas. Radiation Mechanism. Single wire. Wire configurations for radiation. Two wires. Dipole. Current distribution on a thin wire antenna.	[1] p. 7-27 [2]
		Examination knowledges of students individually on the material of respective lecture. Analysis the lecture material in details. Solving problems.	[1] p.2-2
2	26.02.22	Fundamental parameters of antennas.Radiation Pattern. Radiation Power Density.Radiation intensity . Beamwidth. Directivity.Numerical techniques. Antenna Efficiency.Gain.	[1] p.27-69 [3]
		Examination knowledges of students individually on the material of respective lecture. Analysis the lecture material in details. Solving problems.	[1] p.
3	05.03.22	Beam efficiency. Bandwidth. Polarization. Input impedance. Antenna radiation efficiency. Antenna vector effective length and equivalent areas. Maximu directivity and maximum effective area.Friis transmission Equation and Radar Range equation. Antenna temperature.	[1] p.69-95 [3]

		Examination knowledges of students individually on the material of respective lecture. Analysis the lecture material in details. Solving problems.	[1] p.
4	12.03.22	Linear wire Antennas. Infinitesimal Dipole. Small Dipole. Region separation. Finite length dipole. Half-wavelength dipole. Linear elements near or on infinite perfect conductors. Ground effects.	[1] p. 151-205 [3]
		Examination knowledges of students individually on the material of respective lecture. Analysis the lecture material in details. Solving problems.	[3]
5	19.03.22	Loop antennas. Small circular loop. Circular loop of constant current. Circular loop with nonuniform current. Ground and Earth curvature efffects for circular loops. Polygonal loop antennas. Ferrite loop antennas. Mobile communication systems applications.	[1] p.231-266 [3]
		Examination knowledges of students individually on the material of respective lecture. Analysis the lecture material in details. Solving problems.	[1] p.
6	26.03.22	Linear, planar and circular arrays. Two-element array. N-element linear	[1] p.283-320
		Three-dimensional characteristics.	[3]
		Examination knowledges of students individually on the material of respective lecture. Analysis the lecture material in details. Solving problems.	[1] p.322-365
		Rectangular-to-Polar Graphical solution.N-element linear array:Uniform spacing.Nonuniform amplitude .Superconductivity. Planar array.Design considerations.Circular array.	
7	02.04.22	Continuous sources.Schelkunoff Polynomial method. Fourier Transform method.Woodward-Lawson Method. Taylor-line-source. Triangular, cosine, and cosine-squared amplitude distributions.Line-source phase distributions.Continuous aperture sources.	[1] p.385-419 [3]
		Examination knowledges of students individually on the material of respective lecture. Analysis the lecture material in details. Solving problems.	[1] p.
8	09.04.22	Integral equation method. Finite diameter wires. Moment method solution.	[1] p.433-478
		coupling in arrays.	[2]
		Examination knowledges of students individually on the material of respective lecture. Analysis the lecture material in details. Solving problems.	[1] p.
9	16.04.22	Mid term exam	
10	23.04.22	Broadband dipoles and matching techniques. Biconical antenna. Triangular sheet,bow-tie and wire simulation.Cylindrical dipole.Folded dipole.Discone and Conical Skirt Monopole.Matching techniques. Traveling wave antennas. Broadband antennas.	[1] p.497-556 [3]
		Examination knowledges of students individually on the material of respective lecture. Analysis the lecture material in details. Solving problems.	[1] p.

11	30.04.22	Frequency independent antennas. Theory. Equiangular Spiral antennas. Log-periodic antennas. Fundamental limits of electrically small antennas. Fractal antennas.	[1] p.611-641 [3]
		Examination knowledges of students individually on the material of respective lecture. Analysis the lecture material in details. Solving problems.	[2] p.
12	07.05.22	Aperture antennas. Field equivalence principle: Huygens' principle. Radiation equation. Directivity. Recangular apertures. Circular apertures. Design considerations. Babinet's principle. Fourier transforms in aperture antenna theory. Ground plane.	[1] p.653-701
		Examination knowledges of students individually on the material of respective lecture. Analysis the lecture material in details. Solving problems.	
13	14.05.22	Horn antennas. E-plane sectoral horn. H-plane sectoral horn. Pyramidal horn. Conical horn. Corrygated horn. Aperture-atched horns. Multimode horns. Dielectric loaded horns. Phase center.	[1] p.739-799
		respective lecture. Analysis the lecture material in details. Solving problems.	[2] p.
14	21.05.22	Microstrip antennas. Rectangular patch. Circular patch. Quality factor, bandwith, efficiency. Input impedance. Coupling. Circular polarization. Arrays and feed networks.	[1] p.811-865
		Examination knowledges of students individually on the material of respective lecture. Analysis the lecture material in details. Solving problems.	[2] p.
15	28.05.22	Reflector antennas. Plane reflector. Corner reflector. Parabolic reflector. Spherical reflector. Smart antennas. Sartr-antenna analogy. Cellular radio systems evolution. Signal propagation. Antenna beamforming.	[1] p.883-958
		Examination knowledges of students individually on the material of respective lecture. Analysis the lecture material in details. Solving problems.	[1] p.
		Final Exam	

A