| Identification       | Subject                                                                                                                                                                                     | ETR 490 Optical Communication Engine                     | ering 6 ECTS                |  |  |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------|--|--|
|                      | (code, title, credits)                                                                                                                                                                      |                                                          |                             |  |  |
|                      | Department                                                                                                                                                                                  | Physics and Electronics                                  |                             |  |  |
|                      | Program                                                                                                                                                                                     | Master                                                   |                             |  |  |
|                      | (undergraduat,                                                                                                                                                                              |                                                          |                             |  |  |
|                      | graduate)                                                                                                                                                                                   |                                                          |                             |  |  |
|                      | Term                                                                                                                                                                                        | 2022 fall                                                |                             |  |  |
|                      | Instructor                                                                                                                                                                                  | Ahmad Asimov ph.D                                        |                             |  |  |
|                      | E-mail:                                                                                                                                                                                     | fizikasimov@gmail.com                                    |                             |  |  |
|                      | Phone:                                                                                                                                                                                      | +994124211093 (daxili255)                                |                             |  |  |
|                      | Classroom/hours                                                                                                                                                                             | 302N Monday /Wednesday                                   | 6.00                        |  |  |
| D                    | Office hours                                                                                                                                                                                | Tuesday: 15:00-16:00/ Thursday: 15:00-1                  | 6:00                        |  |  |
| Prerequisites        | English                                                                                                                                                                                     |                                                          |                             |  |  |
| Language             | English                                                                                                                                                                                     |                                                          |                             |  |  |
| Compulsory           | Compulsory                                                                                                                                                                                  | estrical Engineering by Don II Johnson                   | Diag University Houston     |  |  |
| Required textbooks   | 1. Fundamentals of Electrical Engineering, by Don H. Johnson, Rice University, Houston,                                                                                                     |                                                          |                             |  |  |
| and course materials | Texas, 2013.                                                                                                                                                                                |                                                          |                             |  |  |
| Cause description    | 2. Communication Systems, Simon Haykin, 4th Ed. Wiley, 2001, ISBN 0-471-17869-1                                                                                                             |                                                          |                             |  |  |
| Course description   | This subject focuses in studying the optical fiber communications components and                                                                                                            |                                                          |                             |  |  |
|                      | systems. Topics include, Optical fiber waveguides, Transmission characteristics of optical fibers, Optical fibers and cables, Optical sources: the laser, the light-emitting diode, Optical |                                                          |                             |  |  |
|                      |                                                                                                                                                                                             |                                                          |                             |  |  |
|                      | detectors, Optical amplification, Optical networks and including past and future generation networks. Simulation of optical communication under different channel environments will be      |                                                          |                             |  |  |
|                      | integral part of this course. The first section explains the theory of multimode and single-mode                                                                                            |                                                          |                             |  |  |
|                      | fibers, then the technological features, including manufacturing, cabling, and connecting. The                                                                                              |                                                          |                             |  |  |
|                      | second section describes the various components (passive and active optical components,                                                                                                     |                                                          |                             |  |  |
|                      | integrated optics, opto-electronic transmitters and receivers, and optical amplifiers) used in fiber                                                                                        |                                                          |                             |  |  |
|                      |                                                                                                                                                                                             | the optical transmission system design is ex             |                             |  |  |
|                      | optical networks and fiber optic sensors are detailed, including the most recent developments in                                                                                            |                                                          |                             |  |  |
|                      | switched networks                                                                                                                                                                           |                                                          |                             |  |  |
| Course objectives    | Upon successful completion of this course, students will be able to:                                                                                                                        |                                                          |                             |  |  |
|                      | Students will analyze the structure of common communication system and can build the model                                                                                                  |                                                          |                             |  |  |
|                      | of that system, will study both theoretical and practical aspects of information processing. At the                                                                                         |                                                          |                             |  |  |
|                      | end of the course the students understand how build the communication system, and why digital                                                                                               |                                                          |                             |  |  |
|                      | communication has wide uses in modern life. They will be able to construct the mathematical                                                                                                 |                                                          |                             |  |  |
|                      | model and block diagrams of communication system, to analyze the input and output signals                                                                                                   |                                                          |                             |  |  |
|                      | which have important ro                                                                                                                                                                     | hich have important roles for information communication. |                             |  |  |
| Learning outcomes    | This is a calculus-bas                                                                                                                                                                      | sed introductory physics course. After succ              | cessfully completed course, |  |  |
|                      | students will be able to:                                                                                                                                                                   |                                                          |                             |  |  |
|                      | Demonstrate basic fiber handling skills, including cleaving and splicing. Operate                                                                                                           |                                                          |                             |  |  |
|                      | instrumentation for measuring fiber and optical system properties. Describe a suitable model for                                                                                            |                                                          |                             |  |  |
|                      | noise in communications, determine the signal-to-noise ratio performance of analog                                                                                                          |                                                          |                             |  |  |
|                      | communications systems, determine the probability of error for digital communications systems,                                                                                              |                                                          |                             |  |  |
|                      | understand information theory and its significance in determining system performance, compare                                                                                               |                                                          |                             |  |  |
|                      | the performance of various communications systems.                                                                                                                                          |                                                          |                             |  |  |
| Teaching methods     | Lecture                                                                                                                                                                                     |                                                          |                             |  |  |
| 3                    | Group discussion                                                                                                                                                                            |                                                          | L                           |  |  |
|                      | Experiential exercise                                                                                                                                                                       |                                                          | L                           |  |  |
|                      | Quiz, Classroom Exams                                                                                                                                                                       |                                                          |                             |  |  |
| Evaluation           | Methods                                                                                                                                                                                     | Date/deadlines                                           | Percentage (%)              |  |  |
|                      | Midterm Exam                                                                                                                                                                                |                                                          | 30                          |  |  |
|                      | Attendance                                                                                                                                                                                  | During the semester                                      | 5                           |  |  |
|                      | Quizzes                                                                                                                                                                                     | 4 quizzes during the semester                            | 20                          |  |  |
|                      | Activity                                                                                                                                                                                    | During the semester                                      | 5                           |  |  |
|                      |                                                                                                                                                                                             |                                                          |                             |  |  |
|                      | Final Exam                                                                                                                                                                                  |                                                          | 40                          |  |  |

## **Policy**

## Preparation for class

The structure of this course makes your individual study and preparation outside the class extremely important. The lecture material will focus on the major points introduced in the text. Reading the assigned chapters and having some familiarity with them before class will greatly assist your understanding of the lecture. After the lecture, you should study your notes and work relevant problems and cases from the end of the chapter and sample examquestions.

### • Withdrawal (pass/fail)

This course strictly follows grading policy of the School of Science and Engineering. Thus, a student is normally expected to achieve a mark of at least 60% to pass. In case of failure, he/she will be required to repeat the course the following term or year.

# Cheating/plagiarism

Cheating or other plagiarism during the Quizzes, Mid-term and Final Examinations will lead to paper cancellation. In this case, the student will automatically get zero (0), without any considerations.

# Professional behavior guidelines

The students shall behave in the way to create favorable academic and professional environment during the class hours. Unauthorized discussions and unethical behavior are strictly prohibited.

### Ouizzes

There will be a quiz examination per two weeks. The quizzes will be announced in the classroom two weeks before. Quiz is from homework problems.

The homework problems will be selected from questions and problems in the end of each chapter. The No. of homework problems will be announced after finishing each chapter.

### Attendance

Attendance refers to the student's presence in classroom. Students should attend all classes. Failure to do so will result in the deduction of points from the 'attendance' component of their final grade. Ten percent (5%) of the total grade will depend upon attendance in class.

## Activity

Students who will be active during discussion of past lessons will be awarded with one activity mark.

|      |                         | Tentative Schedule                                                                                                                                    |                       |
|------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| Week | Date/Day<br>(tentative) | Date/Day Topics                                                                                                                                       |                       |
| 1    | 20.09.22<br>23.09.22    | Advantages of Optical Fiber Communications, Nature of Light, structure of communication systems, fundamental signal, Evolution of fiber optic system, | [1] Pages/ 1-10/      |
| 2    | 27.09.22<br>30.09.22    | Optical fiber waveguides Single-mode fibers, Photonic crystal fibers                                                                                  | [1] Pages /11-82/     |
| 3    | 04.10.22<br>07.10.22    | Transmission characteristics of optical fibers<br>Linear scattering losses, Nonlinear scattering losses, Fiber bend<br>loss, dispersion, Polarization | [1] / pages 86- 163/  |
| 4    | 11.10.22<br>14.10.22    | Optical fibers and cables  Vapor-phase deposition techniques, Optical fibers, Cable design.                                                           | [1] / pages 169- 207/ |
| 5    | 18.10.22<br>21.10.22    | Optical fiber connections: joints, couplers and isolators  Fiber splices, Fiber connectors, Optical isolators and circulators                         | [1] / pages 217- 287/ |
| 6    | 25.10.22<br>28.10.22    | Optical sources 1: the laser  Optical emission from semiconductors, The semiconductor injection laser                                                 | [1]/pages 294- 386/   |
| 7    | 01.11.22                | Optical sources 2: the light-emitting diode                                                                                                           | [1]/pages 396- 439/   |

|    | 04.11.22                                                               | LED structures, LED characteristics, Modulation.                                                                                                                                           |                        |  |
|----|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--|
| 8  |                                                                        | Midterm exam                                                                                                                                                                               |                        |  |
|    |                                                                        |                                                                                                                                                                                            | [1]/pages 444- 496/    |  |
| 9  |                                                                        | 08.11.22 Optical detectors                                                                                                                                                                 |                        |  |
|    | 11.11.22                                                               | Introduction, Device types, Optical detection principles,<br>Absorption, Semiconductor photodiodes without internal gain,<br>The p–n photodiode, The p–i–n photodiode, Phototransistors    |                        |  |
| 10 | 15.11.22 Direct detection receiver performance considerations 18.11.22 |                                                                                                                                                                                            | [1]/pages 502- 545/    |  |
|    |                                                                        | Noise, Thermal noise, Dark current noise, Quantum noise,                                                                                                                                   |                        |  |
|    |                                                                        | Digital signaling quantum noise, Analog transmission quantum                                                                                                                               |                        |  |
|    |                                                                        | noise, Receiver noise                                                                                                                                                                      |                        |  |
| 11 | 22.11.22<br>25.11.22                                                   | Optical amplification, wavelength conversion and regeneration. Optical amplifiers,                                                                                                         | [1]/pages 549- 555/    |  |
| 12 | 29.11.22<br>02.12.22                                                   | Semiconductor optical amplifiers, Fiber and waveguide amplifiers                                                                                                                           | [1]/pages 556- 605/    |  |
| 13 | 06.12.22<br>09.12.22                                                   | Integrated optics and photonics  Integrated optics and photonics technologies, Optoelectronic integration, Photonic integrated circuits, Optical computation.                              | [1]/pages 606- 665/    |  |
| 14 | 13.12.22<br>16.12.22                                                   | Optical fiber systems 1: intensity modulation/direct detection.  The optical receiver circuit, the optical transmitter circuit, digital system and analog system, Multiplexing strategies. | [1]/pages 673 – 811/   |  |
| 15 | 20.12.22<br>23.12.22                                                   | Optical fiber systems 2: coherent and phase modulated  Modulation formats, Phase shift keying, Polarization shift keying, Demodulation schemes, Receiver sensitivities                     | [1]/pages 823- 897/    |  |
| 16 | 27.12.22<br>30.12.22                                                   | Optical fiber measurements  Optical networks, Optical switching networks, Optical Ethernet.                                                                                                | [1]/pages /905 – 1041/ |  |
|    |                                                                        |                                                                                                                                                                                            |                        |  |

