SYLLABUS

General information	Title and code of subject, number of credits	ETR 476 - Radio Transmitting and Antenna Devices – 6 ECTS credits		
mormation		Physics and Electronics		
	Program U	Undergraduate		
		Spring 2021		
		PhD in Physics & Mathematics, Ass	sociate ProfHəsənov Eçin	
		elgafgas@yahooscom		
	Phone number: 05	505287740		
	Lecture room/Schedule 1	11 Mehseti Street, AZ1096 Baku, Azerbaijan (Neftchilar campus),		
		room Office hours: Wednesday 14:00 – 15:00		
Prerequisites	ETR 234 – Analog and digital elec	etronics		
Course	English	English		
Type of the	Major			
subject	Major			
Textbooks and	Textbooks:			
additional		na Theory, Analysis and Design.		
materials	2. Chuck Fung. Antenna basic t	heory, 2011		
	3. Richard C.Johnson. Antenna	Engineering Handbook , 1993		
m l. ·	T. d.			
Teaching	Lecture		X	
methods Assessment	Group discussions at seminars Components	Date/ Deadline	Percent (%)	
Assessment	Tests	During the semester	5	
	Active participation	At each lesson	5	
	Individual research papers and	At the end of the semester	15	
	presentations		_	
	Attendance		5	
	Midterm exam		30	
	Final exam		40	
	Final		100	
Course description	radiation. Current distribution on a	ntennas. Radiation Mechanism. Single a thin wire antenna. Beam efficiency. I	Bandwidth. Polarization. Input	
	_	ciency. Frequency independent anten	inas, aperture antennas,	
	microstrip antennas, horn antennas	s, reflector antennas.		
	The basic physical and engin	eering principles of antennas will b	a described and their relative	
		vill be explored. The capabilities of t		
		criteria such as spatial and temporal i		
		s of the methods will be illustrate		
		ctive of the development of each anter	nna technique will be presented,	
	as well as the latest innovations.	1. 1	211 1 2 1	
Course	Finally, potentially new and em	erging medical imaging technique arse is to enable students to develop a l		
objectives	9	a theory and to apply them to the analy	•	
objectives		many methods of analysis and design		
		to some of the most basic and practical		
	dipoles; loops, arrays; broadband	, and frequency-independent antennas	s; aperture antennas; horn	
	antennas; microstrip antennas and	reflector antennas.		
Loorning	What students should know by t	he and of the course.		
Learning outcomes	•		gurations for radiation Comm.	
outcomes	distribution on a thin wire antenna. Beam efficiency. Bandwidth. Polarization. Input impedance.			
	Antenna radiation efficiency. Frequency independent antennas, aperture antennas, microstrip			
	antennas, horn antennas, reflector antennas. Antenna measurements: Antenna ranges. Radiation			
	pattern. Gain measurement. Directivity easurements. Radiation efficiency. Impedance measurements			

	Current measurements. Polarization measurements.			
Rules	Lesson organization			
(Educati on al	General information on the subject will be provided for the students during lectures.			
policy and	Student's knowledge on the previous topics will be evaluated and new topic will be explained by			
behavior)	means of visual aids during seminars. Student's knowledge level will be tested orally and in writter			
	forms before midterm and final exams. Submission of the individual works by the end of course is			
	obligatory.			
	Attendance			
	Students, missing more than 30% of lessons, are not allowed to take the exam.			
	Tests			
	Those students who have informed the teacher and the dean's office about missing the test in adv			
	for particular reasons, are allowed to take the test next week.			
	Exams			
	All the issues related to the participation and admission to the exam are regulated by the faculty dean.			
	Topics of midterm and final exams are provided for the students before the exams. The questions of			
	midterm exam are not repeated in the final exam.			
	Violation of the rules of the exams			
Disrupting the test and taking copy during midterm and final exams is forbidden. Te				
	student who do not follow these rules are canceled and the students are expelled from the test by			
	getting 0 (zero).			
	The rule for completing the course			
	In accordance with the University rules the overall success rate to complete the course should be 60			
	or above. The students who failed the exam would be to take this subject next semester or next year.			

This program reflects the comprehensive information about the subject and information about any changes will be provided in advance.

Week	Dates (planned)	Subject topics	Textbook/ Assignments
1	13.02.21	Introduction. Types of Antennas. Radiation Mechanism. Single wire. Wire configurations for radiation. Two wires. Dipole. Current distribution on a thin wire antenna.	[1] p. 7-27 [2]
		Examination knowledges of students individually on the material of respective lecture. Analysis the lecture material in details. Solving problems.	[1] p.2-2
2	20.02.21	Fundamental parameters of antennas.Radiation Pattern. Radiation Power Density.Radiation intensity . Beamwidth. Directivity.Numerical techniques. Antenna Efficiency.Gain.	[1] p.27-69
		Examination knowledges of students individually on the material of respective lecture. Analysi s the lecture material in details. Solving problems.	[1] p.
3	27.02.21	Beam efficiency. Bandwidth. Polarization. Input impedance. Antenna radiation efficiency. Antenna vector effective length and equivalent areas. Maximu directivity and maximum effective area. Friis transmission Equation and Radar Range equation. Antenna temperature.	[1] p.69-95 [3]
		Examination knowledges of students individually on the material of respective lecture. Analysis the lecture material in details. Solving problems.	[1] p.
4	06.03.21	Linear wire Antennas. Infinitesimal Dipole. Small Dipole. Region separation. Finite length dipole. Half-wavelength dipole. Linear elements near or on infinite perfect conductors. Ground effects.	[1] p. 151-205
		Examination knowledges of students individually on the material of respective lecture. Analysis the lecture material in details.	[3]

		Solving problems.	
5	13.03.21	Loop antennas. Small circular loop. Circular loop of constant current. Circular loop with nonuniform current. Ground and Earth curvature efffects for circular loops. Polygonal loop antennas. Ferrite loop antennas. Mobile communication systems applications.	[1] p.231-266 [3]
		Examination knowledges of students individually on the material of respective lecture. Analysis the lecture material in details. Solving problems.	[1] p.
6	20.03.21	Linear, planar and circular arrays. Two-element array. N-element	[1] p.283-320
		linear array:Uniform amplitude and spacing. Directivity.Design procedure. Three-dimensional characteristics.	[3]
		Examination knowledges of students individually on the material of respective lecture. Analysis the lecture material in details. Solving problems. Rectangular-to-Polar Graphical solution.N-element linear array:Uniform spacing.Nonuniform amplitude .Superconductivity. Planar array.Design considerations.Circular array.	[1] p.322-365
7	27.03.21	Continuous sources. Schelkunoff Polynomial method. Fourier Transform method. Woodward-Lawson Method. Taylor-line-source. Triangular, cosine, and cosine-squared amplitude distributions. Line-source phase distributions. Continuous aperture sources.	[1] p.385-419 [3]
		Examination knowledges of students individually on the material of respective lecture. Analysis the lecture material in details. Solving problems.	[1] p.
8	03.04.21	Integral equation method. Finite diameter wires. Moment method solution. Self impedance. Mutual impedance between linear elements. Mutual coupling in arrays.	[1] p.433-478 [2]
		Examination knowledges of students individually on the material of respective lecture. Analysis the lecture material in details. Solving problems.	[1] p.
9	10.03.21	Mid term exam	
10 17.03.21		Broadband dipoles ands matching techniques. Biconical antenna. Triangular sheet, bow-tie and wire simulation. Cylindrical dipole. Folded dipole. Discone and Conical Skirt Monopole. Matching techniques. Traveling wave antennas. Broadband antennas.	[1] p.497-556 [3]
		Examination knowledges of students individually on the material of respective lecture. Analysis the lecture material in details. Solving problems.	
11	24.03.21	Frequency independent antennas. Theory. Equiangular Spiral antennas. Log-periodic antennas. Fundamental limits of electrically small antennas. Fractal antennas.	[1] p.611-641 [3] [2] p.
		Examination knowledges of students individually on the material of respective lecture. Analysis the lecture material in details. Solving problems.	
12	01.05.21	Aperture antennas. Field equivalence principle: Huygens' principle. Radiation equation. Directivity. Recangular apertures. Circular apertures. Design considerations. Babinet's principle. Fourier transforms in aperture antenna theory. Ground plane.	[1] p.653-701

		Examination knowledges of students individually on the material of respective lecture. Analysis the lecture material in details. Solving problems.	
13	08.05.21	Horn antennas. E-plane sectoral horn. H-plane sectoral horn. Pyramidal horn. Conical horn. Corrygated horn. Aperture-atched horns. Multimode horns. Dielectric loaded horns. Phase center.	[1] p.739-799
		Examination knowledges of students individually on the material of respective lecture. Analysis the lecture material in details. Solving problems.	[2] p.
14	15.05.21	Microstrip antennas. Rectangular patch. Circular patch. Quality factor, bandwith, efficiency. Input impedance. Coupling. Circular polarization. Arrays and feed networks.	[1] p.811-865
		Examination knowledges of students individually on the material of respective lecture. Analysis the lecture material in details. Solving problems.	[2] p.
15	22.05.21	Reflector antennas. Plane reflector. Corner reflector. Parabolic reflector. Spherical reflector. Smart antennas. Sartr-antenna analogy. Cellular radio systems evolution. Signal propagation. Antenna beamforming.	[1] p.883-958
		Examination knowledges of students individually on the material of respective lecture. Analysis the lecture material in details. Solving problems.	[1] p.
		Final Exam	

