Identification	Subject	MATH 105, Calculus 2A, 6 ECTS
	Department	Mathematics
	Program	Undergraduate
	Term	Fall, 2023
	Instructor	Vusal Osmanov
	E-mail:	Saracli@mail.ru
	Phone:	(+994 70) 3333348
	Classroom/hours	Saturday: 11:50-13:20, Saturday: 13:40-15:10
Prerequisites	MATH 101-Calculus 1	
Language	English	
Compulsory/Elective	Required	
Required textbooks and course materials	Core Textbooks: 1. George Thomas, et al, Thomas' Calculus: Early Transcendental, 12th edition, Addison-Wesley (2010), (http://libgen.org/) Supplementary book 2. James Stewart, Essential calculus. Early transcendentals, Second Edition,Brooks/Cole (2013) (http://libgen.org/)	
Course outline	In this subject we develop a method to calculate the areas and volumes of very general shapes. The integral is of fundamental importance in statistics, the sciences, and engineering. Here we will introduce three-dimensional coordinate systems and vectors, also. Vectors are used to study the analytic geometry of space, where they give simple ways to describe lines, planes, surfaces, and curves in space. We use these geometric ideas to study motion in space and the calculus of functions of several variables, with their many important applications in science, engineering, economics, and higher mathematics. The course concerns the study of integration methods, definite integrals and their applications to evaluation areas, volumes, arc length, areas of surfaces of revolution, vectors, three-dimensional Coordinate Systems, limits and continuity in higher dimensions, partial derivatives.	
Course objectives	The concepts of indefinite and definite integrals, vectors, three dimensional coordinate systems, limits and continuity in higher dimensions, partial derivatives. Application of definite integrals to area, volume and arc length and areas of surfaces of revolution problems.	
Learning outcomes	At the end of the course the students should be able: - To find volume using cross-sections; - To find volume using cylindrical shells; - To calculate arc length, areas of surfaces of revolution; - To solve problems involving work and other physical applications; - To apply exponential change to solve real-world problems; - To evaluate definite and indefinite integrals by using techniques of integration; - To evaluate the dot product and cross product of vectors; - To solve application of vectors; - To calculate the limits and continuity in higher dimensions;	

- To find partial derivatives.				
Teaching methods		Lecture		X
		Group discussion		x
		Experiential exercise		X
		Course paper		x
Evaluation		Methods	Date/deadlines	Percentage (\%)
		Midterm Exam		30
		Class Participation		5
		Quizzes		20 (2 quizzes)
		Activity		5
		Final Exam		40
		Total		100
Policy		- Preparation for class The structure of this course makes your individual study and preparation outside the class extremely important. The lecture material will focus on the major points introduced in the text. Reading the assigned chapters and having some familiarity with them before class will greatly assist your understanding of the lecture. After the lecture, you should study your notes and work relevant problems and cases from the end of the chapter and sample exam questions.Throughout the semester we will also have a large number of review sessions. These review sessions will take place during the regularly scheduled class periods. - Attendance Students who do not attend more than 25% of online classes will not be allowed to take the exam. - Withdrawal (pass/fail) This course strictly follows grading policy of the School of Science and Engineering. Thus, a student is normally expected to achieve a mark of at least 60% to pass. In case of failure, he/she will be required to repeat the course the following term or year. - Cheating/plagiarism Cheating or other plagiarism during the Quizzes, Mid-term and Final Examinations will lead to paper cancellation. In this case, the student will automatically get zero (0), without any considerations. - Professional behavior guidelines The students shall behave in the way to create favorable academic and professional environment during the class hours. Unauthorized discussions and unethical behavior are strictly prohibited. - Participation Every two non-participations of a student removes 1% out of his/her total percentage. - Ethics Students should not arrive in late to class. All cell phones must be turned off and stowed away before entering class. Use of any electronic devices is not allowed in the classroom and violators will be punished accordingly.		
Tentative Schedule				
$\begin{aligned} & \text { 若 } \\ & 3 \end{aligned}$	Date/Day (tentative)			Textbook/ Assignments
1	$\begin{aligned} & \hline 23.09 .23 \\ & 23.09 .23 \end{aligned}$	- Volumes Using - Volumes Using	ns Shells	Ch. 6.1, 6.2 / not assigned
2	$\begin{aligned} & \hline 30.09 .23 \\ & 30.09 .23 \end{aligned}$	- Arc Length - Practice		Ch. 6.3 / not assigned

3	$\begin{aligned} & \hline 07.10 .23 \\ & 07.10 .23 \end{aligned}$	- Areas of Surfaces of Revolution - Work and Fluid Forces	Ch. 6.4, 6.5/ not assigned
4	$\begin{aligned} & \hline 14.10 .23 \\ & 14.10 .23 \end{aligned}$	- Moments and Centers of Mass - The Logarithm Defined as an Integral	Ch. 6.6, 7.1 / not assigned
5	$\begin{aligned} & 21.10 .23 \\ & 21.10 .23 \end{aligned}$	- Exponential Change and Separable Differential Equations - Hyperbolic Functions	Ch. 7.2, 7.3/ not assigned
6	$\begin{aligned} & \hline 28.10 .23 \\ & 28.10 .23 \end{aligned}$	- Relative Rates of Growth - Integration by Parts	Ch. 7.4,8.1/ not assigned Quiz (10 pts)
7	$\begin{aligned} & \hline 04.11 .23 \\ & 04.11 .23 \end{aligned}$	- Trigonometric Integrals - Midterm Exam	Ch. 8.2 / not assigned
8	$\begin{aligned} & \hline 11.11 .23 \\ & 11.11 .23 \end{aligned}$	- Trigonometric Substitutions - Integration of Rational Functions by Partial Fractions	Ch. 8.3,8.4 / not assigned
9	$\begin{aligned} & \hline 18.11 .23 \\ & 18.11 .23 \end{aligned}$	- Vectors - Three-Dimensional Coordinate Systems	Ch.12.1, 12.2, / not assigned
10	$\begin{aligned} & 25.11 .23 \\ & 25.11 .23 \end{aligned}$	- The Dot Product - The Cross Product	Ch.12.3, 12.4/ not assigned
11	$\begin{aligned} & \hline 02.12 .23 \\ & 02.12 .23 \end{aligned}$	- Functions of Several Variables	Ch. 14.1/ not assigned
12	$\begin{aligned} & \hline 09.12 .23 \\ & 09.12 .23 \end{aligned}$	- Limits and Continuity in Higher Dimensions, Partial Derivatives	Ch. 14.1/ not assigned
13	$\begin{aligned} & 16.12 .23 \\ & 16.12 .23 \end{aligned}$	- The Chain Rule Directional Derivatives and Gradient Vectors	Ch. 14.4,14.5/ not assigned Quiz (10 pts)
14	$\begin{aligned} & 23.12 .23 \\ & 23.12 .23 \end{aligned}$	- Tangent Planes and Differentials - Extreme Values and Saddle Points	Ch. 14.6,14.7, 14.9 /not assigned
15	$\begin{aligned} & \hline 30.12 .23 \\ & 30.12 .23 \end{aligned}$	- Taylor's Formula for Two Variables	Ch. 14.9 /not assigned
	TBA	Final Exam	

This syllabus is a guide for the course and any modifications to it will be announced in advance.

