Department Mathematics	Identification	Subject MATH 310, Applied Differential Equations, 6 ECTS		
Term Fall, 2023 Instructor Mammadova Saida Oqtay E-mail: seide.memmedova@physics.science.az, memmedova_seide.fiz@mail.ru Phone: (+994) 70-477-70-10 Wednesday: 13:40-15:10, 15:20-16:50				
Term Fall, 2023 Instructor Mammadova Saida Oqtay E-mail: seide.memmedova@physics.science.az, memmedova_seide.fiz@mail.ru Phone: (+994) 70-477-70-10 Wednesday: 13:40-15:10, 15:20-16:50		Program	Undergraduate	
E-mail:			<u> </u>	
memmedova_seide.fiz@mail.ru Phone:			^ ·	
Phone: (+994) 70-477-70-10 Classroom/hours Wednesday: 13:40-15:10, 15:20-16:50 Prerequisites Applied Differential Equations is a second-year, first-semester course. The prerequisite is Calculus 2. Language English Compulsory/Elective Required Required textbooks and course materials 1. William E.Boyce and Richard C. DiPrima, Elementary Differential Equations and Boundary Value problems, 10th edition, 2012 Supplementary book 2. Dennis G. Zill, Warren S. Wright, and Michael R. Cullen, Differential Equations with Boundary-Value Problems, 8th edition, 2013, 673 p. Course outline Applied Differential Equations plays an important role in the understanding of science, engineering, economics, and computer science, among other disciplines. This introductory course covers First Order Differential Equations o Classify a differential equation as linear or nonlinear. o Understand and create a directional field for an arbitrary first-order differential equation. o Determine the order, linearity or nonlinearity, of a differential equation. o Solve first order linear differential equations. o Solve Separable differential equations. o Solve initial value problems. • Numerical Approximations		E-mail:	* *	
Classroom/hours Wednesday: 13:40-15:10, 15:20-16:50		Phone		
Prerequisites Applied Differential Equations is a second-year, first-semester course. The prerequisite is Calculus 2. Language Compulsory/Elective Required textbooks and course materials 1. William E.Boyce and Richard C. DiPrima, Elementary Differential Equations and Boundary Value problems, 10th edition, 2012 Supplementary book 2. Dennis G. Zill, Warren S. Wright, and Michael R. Cullen, Differential Equations with Boundary-Value Problems, 8th edition, 2013, 673 p. Course outline Applied Differential Equations plays an important role in the understanding of science, engineering, economics, and computer science, among other disciplines. This introductory course covers First Order Differential Equations o Classify a differential equation as linear or nonlinear. o Understand and create a directional field for an arbitrary first-order differential equation. o Determine the order, linearity or nonlinearity, of a differential equation. o Solve first order linear differential equations. o Solve Separable differential equations. o Solve initial value problems. • Numerical Approximations				
Language English Required				
Language English Required	Prerequisites		-	
Required textbooks and course materials		prerequisite is Calcu	llus 2.	
Core Textbooks and course materials	Language	English		
1. William E.Boyce and Richard C. DiPrima, Elementary Differential Equations and Boundary Value problems, 10th edition, 2012 Supplementary book 2. Dennis G. Zill, Warren S. Wright, and Michael R. Cullen, Differential Equations with Boundary-Value Problems, 8th edition, 2013, 673 p. Course outline Applied Differential Equations plays an important role in the understanding of science, engineering, economics, and computer science, among other disciplines. This introductory course covers First Order Differential Equations o Classify a differential equation as linear or nonlinear. o Understand and create a directional field for an arbitrary first-order differential equation. o Determine the order, linearity or nonlinearity, of a differential equation. o Solve first order linear differential equations. o Solve Separable differential equations. o Solve initial value problems. • Numerical Approximations		•		
1. William E.Boyce and Richard C. DiPrima, Elementary Differential Equations and Boundary Value problems, 10th edition, 2012 Supplementary book 2. Dennis G. Zill, Warren S. Wright, and Michael R. Cullen, Differential Equations with Boundary-Value Problems, 8th edition, 2013, 673 p. Course outline Applied Differential Equations plays an important role in the understanding of science, engineering, economics, and computer science, among other disciplines. This introductory course covers First Order Differential Equations o Classify a differential equation as linear or nonlinear. o Understand and create a directional field for an arbitrary first-order differential equation. o Determine the order, linearity or nonlinearity, of a differential equation. o Solve first order linear differential equations. o Solve Separable differential equations. o Solve initial value problems. • Numerical Approximations	_	Core Textbook	ss:	
Equations and Boundary Value problems, 10th edition, 2012 Supplementary book 2. Dennis G. Zill, Warren S. Wright, and Michael R. Cullen, Differential Equations with Boundary-Value Problems, 8th edition, 2013, 673 p. Course outline Applied Differential Equations plays an important role in the understanding of science, engineering, economics, and computer science, among other disciplines. This introductory course covers First Order Differential Equations o Classify a differential equation as linear or nonlinear. o Understand and create a directional field for an arbitrary first-order differential equation. o Determine the order, linearity or nonlinearity, of a differential equation. o Solve first order linear differential equations. o Solve Separable differential equations. o Solve initial value problems. • Numerical Approximations	and course materials	1. William E.I	Boyce and Richard C. DiPrima, Elementary Differential	
2. Dennis G. Zill, Warren S. Wright, and Michael R. Cullen, Differential Equations with Boundary-Value Problems, 8th edition, 2013, 673 p. Applied Differential Equations plays an important role in the understanding of science, engineering, economics, and computer science, among other disciplines. This introductory course covers First Order Differential Equations o Classify a differential equation as linear or nonlinear. o Understand and create a directional field for an arbitrary first-order differential equation. o Determine the order, linearity or nonlinearity, of a differential equation. o Solve first order linear differential equations. o Solve Separable differential equations. o Solve initial value problems. • Numerical Approximations				
Equations with Boundary-Value Problems, 8th edition, 2013, 673 p. Applied Differential Equations plays an important role in the understanding of science, engineering, economics, and computer science, among other disciplines. This introductory course covers First Order Differential Equations o Classify a differential equation as linear or nonlinear. o Understand and create a directional field for an arbitrary first-order differential equation. o Determine the order, linearity or nonlinearity, of a differential equation. o Solve first order linear differential equations. o Solve Separable differential equations. o Solve initial value problems. • Numerical Approximations		Supplementary book		
Equations with Boundary-Value Problems, 8th edition, 2013, 673 p. Applied Differential Equations plays an important role in the understanding of science, engineering, economics, and computer science, among other disciplines. This introductory course covers First Order Differential Equations o Classify a differential equation as linear or nonlinear. o Understand and create a directional field for an arbitrary first-order differential equation. o Determine the order, linearity or nonlinearity, of a differential equation. o Solve first order linear differential equations. o Solve Separable differential equations. o Solve initial value problems. • Numerical Approximations				
Course outline Applied Differential Equations plays an important role in the understanding of science, engineering, economics, and computer science, among other disciplines. This introductory course covers First Order Differential Equations o Classify a differential equation as linear or nonlinear. o Understand and create a directional field for an arbitrary first-order differential equation. o Determine the order, linearity or nonlinearity, of a differential equation. o Solve first order linear differential equations. o Solve Separable differential equations. o Solve initial value problems. • Numerical Approximations			200	
science, engineering, economics, and computer science, among other disciplines. This introductory course covers First Order Differential Equations o Classify a differential equation as linear or nonlinear. o Understand and create a directional field for an arbitrary first-order differential equation. o Determine the order, linearity or nonlinearity, of a differential equation. o Solve first order linear differential equations. o Solve Separable differential equations. o Solve initial value problems. • Numerical Approximations		1	,	
introductory course covers First Order Differential Equations o Classify a differential equation as linear or nonlinear. o Understand and create a directional field for an arbitrary first-order differential equation. o Determine the order, linearity or nonlinearity, of a differential equation. o Solve first order linear differential equations. o Solve Separable differential equations. o Solve initial value problems. • Numerical Approximations	Course outline	Applied Differential	Equations plays an important role in the understanding of	
First Order Differential Equations o Classify a differential equation as linear or nonlinear. o Understand and create a directional field for an arbitrary first-order differential equation. o Determine the order, linearity or nonlinearity, of a differential equation. o Solve first order linear differential equations. o Solve Separable differential equations. o Solve initial value problems. • Numerical Approximations		science, engineering	, economics, and computer science, among other disciplines. This	
o Classify a differential equation as linear or nonlinear. o Understand and create a directional field for an arbitrary first-order differential equation. o Determine the order, linearity or nonlinearity, of a differential equation. o Solve first order linear differential equations. o Solve Separable differential equations. o Solve initial value problems. • Numerical Approximations		introductory course	covers	
o Understand and create a directional field for an arbitrary first-order differential equation. o Determine the order, linearity or nonlinearity, of a differential equation. o Solve first order linear differential equations. o Solve Separable differential equations. o Solve initial value problems. • Numerical Approximations		First Order Different	tial Equations	
equation. o Determine the order, linearity or nonlinearity, of a differential equation. o Solve first order linear differential equations. o Solve Separable differential equations. o Solve initial value problems. • Numerical Approximations		o Classify a differer	ntial equation as linear or nonlinear.	
 o Determine the order, linearity or nonlinearity, of a differential equation. o Solve first order linear differential equations. o Solve Separable differential equations. o Solve initial value problems. • Numerical Approximations 		o Understand and cre	eate a directional field for an arbitrary first-order differential	
 o Solve first order linear differential equations. o Solve Separable differential equations. o Solve initial value problems. • Numerical Approximations 		equation.		
o Solve Separable differential equations.o Solve initial value problems.• Numerical Approximations		o Determine the orde	er, linearity or nonlinearity, of a differential equation.	
o Solve initial value problems. • Numerical Approximations		o Solve first order li	near differential equations.	
Numerical Approximations				
**				
o Use the Euler or tangent line method to find an approximate solution to a linear				
		o Use the Euler or tangent line method to find an approximate solution to a linear		
differential equation.		differential equation.		
Higher Order Differential Equations		Higher Order Differential Equations		
o Solve second order homogenous linear differential equations with constant		o Solve second order	r homogenous linear differential equations with constant	
coefficients including those with complex roots and real roots.		coefficients includin	g those with complex roots and real roots.	
o Determine the Fundamental solution set for a linear homogeneous equation.		o Determine the Fun	damental solution set for a linear homogeneous equation.	
o Calculate the Wronskian.		o Calculate the Wron	nskian.	
o Use the method of Reduction of order.		o Use the method of	Reduction of order.	
o Solve nonhomogeneous differential equations using the method of undetermined		o Solve nonhomoger	neous differential equations using the method of undetermined	

	coefficients.					
	o Solve nonhomogeneous	differential equations using the	method of variation of			
		THE WILLIAM OF A WILLIAM OF				
	parameters.					
	Laplace Transforms					
	o Use the definition of the	o Use the definition of the Laplace transform to find transforms of simple functions				
	o Find Laplace transforms	of derivatives of functions who	se transforms are known			
	o Find inverse Laplace trai	nsforms of various functions.				
	o Use Laplace transforms	to solve ODEs				
Course objectives	constant and non-constan	ation of n-th order ordinary nt coefficients; To find Lapl we differential equations with La evectors.	ace transform and inverse			
Learning outcomes	At the end of the cou	arse the students should be able	to:			
	Determine if a gequation; apply the theore equations appropriately; Distinguish betwee (a) linear and non-li (b) ordinary and (c) homogeneou Solve ordinary di using:	 Distinguish between (a) linear and non-linear differential equations; (b) ordinary and partial differential equations; (c) homogeneous and non-homogeneous differential equations; Solve ordinary differential equations and systems of differential equationsing: (a) Direct integration (b) Separation of variables (c) Methods of undetermined coefficients and variation of parameters and interpret their qualitative behavior, Determine particular solutions to differential equations with given initia 				
	 Apply ideas from linear algebra in order to solve single linear ordinary differential equations and systems of such equations, Model certain physical phenomena using differential equations and reinterpret their solutions physically, 					
TD 1. (1.1	11.	ansform for solving differential	•			
Teaching methods	Lecture Crown discussion		X			
	Group discussion Experiential exercise		X			
	Course paper		X X			
Evaluation	Methods	Date/deadlines	Percentage (%)			
	Midterm Exam		30			
	Class Participation		5			
	Quizzes		20 (2 quizzes)			
	Activity		5			
	Final Exam		40			
	Total		100			

Policy

Preparation for class

The structure of this course makes your individual study and preparation outside the class extremely important. The lecture material will focus on the major points introduced in the text. Reading the assigned chapters and having some familiarity with them before class will greatly assist your understanding of the lecture. After the lecture, you should study your notes and work relevant problems and cases from the end of the chapter and sample exam questions. Throughout the semester we will also have a large number of review sessions. These review sessions will take place during the regularly scheduled class periods.

Attendance

Students who do not attend more than 25% of classes will not be allowed to take the exam.

Quizzes and examinations

Quizzes may be given unannounced throughout the term. There will be no make-up quizzes.

Withdrawal (pass/fail)

This course strictly follows grading policy of the School of Science and Engineering. Thus, a student is normally expected to achieve a mark of at least 60% to pass. In case of failure, he/she will be required to repeat the course the following term or year.

Cheating/plagiarism

Cheating or other plagiarism during the Quizzes, Mid-term and Final Examinations will lead to paper cancellation. In this case, the student will automatically get zero (0), without any considerations.

Professional behavior guidelines

The students shall behave in the way to create favorable academic and professional environment during the class hours. Unauthorized discussions and unethical behavior are strictly prohibited.

Ethic

Use of any electronic devices is prohibited in the classroom. All devices should be turned off before entering class. This is a university policy and <u>violators will be</u> reprimanded accordingly!

Students should not arrive in late to class!

	Tentative Schedule				
Week	Date/Day (tentative)	Topics	Textbook/ Assignments		
1	20.09.23 22.09.23	Linear Equations; Method of integrating factorSeparable equations	2.1, 2.2		
2	27.09.23 29.09.23	Exact equation, integrating factorsPractice	2.6		
3	04.10.23 06.10.23	 Second Order Linear Equations. Homogeneous equations with constant coefficients Solutions of linear homogeneous equations; the Wronskian 	3.1, 3.2		
4	11.10.23 13.10.23	Complex roots of the characteristic equationRepeated roots; Reduction of order	3.3, 3.4		

5	18.10.23 20.10.23	 Nonhomogeneous Equations; Method of Undetermined Coefficients Variation of parameters 	3.5, 3.6
6	25.10.23 27.10.23	 Homogeneous equations with constant coefficients The Method of Undetermined Coefficients 	4.2, 4.3
7	25.10.23 27.10.23	The method of variation of parametersPractice	4.4 Quiz (10 pts)
8	01.11.23 03.11.23	 Definition of the Laplace Transform Solution of Initial Value Problem 	6.1, 6.2
9	08.11.23 10.11.23	Holiday Midterm Exam	
10	15.11.23 17.11.23	Step FunctionsReview of Matrices	6.3, 7.2
11	22.11.23 24.11.23	 Systems of Linear Algebraic Equations; Linear independence; Eigenvalues; Eigenvectors Practice 	7.3
12	29.11.23 01.12.23	 Homogeneous Linear systems with Constant coefficients Practice 	7.5
13	06.12.23 08.12.23	Complex EigenvaluesPractice	7.6
14	13.12.23 15.12.23	Fundamental MatricesPractice	7.7 Quiz (10 pts)
15	20.12.23 22.12.23	Repeated EigenvaluesPractice	7.8
16	27.12.23 29.12.23	 Nonhomogeneous Linear Systems Practice 	7.9
	TBA	Final Exam	