Identification	Subject	MATH 217 Probabilit Statistics 3KU (6 ECT	Mathematical
	Department	Mathematics	
	Program	Undergraduate	
	Term	Fall, 2023	
	Instructor	Leyla Bayramova	
	E-mail:	mustafayevaleyla@kha	
	Classroom/hours	Thuesday: 13:40-15:10,	
Prerequisites	MATH 215 Linear Algebra and Mathematical Analysis		
Language	English		
Compulsory/Elective	Compulsory		
Required textbooks and course materials	1. "A First C pages Pub 2. Basic Stat G. Marcha 2013 3. Montgomery ed.), Wile Suppleme 1. Applied St Montgom 2. Statistics Carlson, 3. Gnedenko 4. B.V.Gned Theory of	se in Probability" by Shel ed May 28th 2005 by Pren sor Business and Econo amuel A. Wathen, Publish Douglas C., Introduction ew York, 2008. ry book stics and Probability for E George C. Runger, John Business and Economics, y M. Thorne V. Theory of Probability, o and A.Ya.Khinchin. An bability, New York, 1992	s, Seventh Edition, 576 las A. Lind, William raw-Hill Education, Quality Control (6th Douglas C. ons, 2003 old, William L. y Introduction to the
Course outline	- Define pr - Explain - Formulat - Calculate probability - Apply an - Calculate populatio error.	ipal concepts about probab concepts of a radom event eorems about the concept babilities using Condition and Bayes' theorem. terpret the central limit th sample size required to e roportion given a desired	ity. ity, Rule of total ns. pulation mean and a level and margin of
Course objectives	Probability Theory Conditional Probability and Independence, Random Variables, Sampling Methods and Limit Theorems, Describing Data, Estimation and Confidence Intervals, Hypothesis Testing.		
Learning outcomes	Upon successfully - Express th - Calculate compleme - Solve the p - Express th - Calculate variable. - Solve the p - Define cen - Calculate - Conduct a	pleting this course studen ncepts of factorial and the probability of simp y events. lems about conditional prob atures of random variable expected value, variance lems about continuous di limit theorem problems. interpret confidence Inter interpret hypothesis tests.	le to: cipal of counting. compound events, d Bayes' theorem. deviation of a random
Teaching methods	Lecture		X
	Assisted work		X
	Assisted lab work		X
	Others		
Evaluation	Methods	Date/deadlines	Percentage (\%)

Week	Date/Day (Tentative)	Topics	Textbook/Assignments
1	$\begin{aligned} & \hline 19.09 .23 \\ & 19.09 .23 \end{aligned}$	Probability Sample Space, Events, Probability measure The Fundamental Principle of counting Permutations Combinations	$\begin{aligned} & \text { [1] Ch. 1.1, 1.2, 1.3, 1.4, } \\ & 1.5 \end{aligned}$
2	$\begin{aligned} & 26.09 .23 \\ & 26.09 .23 \end{aligned}$	Probability of Intersection, Union, and Complementary Event Probability and Counting Techniques	$\begin{aligned} & {[1] \text { Ch. 2.1, 2.2,2.3, 2.4, }} \\ & 2.5 \end{aligned}$
3	$\begin{aligned} & \hline 03.10 .23 \\ & 03.10 .23 \end{aligned}$	Conditional Probabilities. Posterior Probabilities: Bayes' Formula Independent Events	[1] Ch. 3.1, 3.2, 3.3, 3.4
4	$\begin{aligned} & \hline 10.10 .23 \\ & 10.10 .23 \end{aligned}$	Random Variables Probability Mass Function and Cumulative Distribution Function	$\begin{aligned} & {[1] \text { Ch. 4.1, 4.2, 4.3,4.4, }} \\ & 4.5 \end{aligned}$
5	$\begin{aligned} & \hline 17.10 .23 \\ & 17.10 .23 \end{aligned}$	Bernoulli Trials and Binomial Distributions The Expected Value and Variance of the Binomial Distribution	[1] Ch. 4.6, 4.7, 4.8 Quiz 1 (6 pts)
6	$\begin{aligned} & 24.10 .23 \\ & 24.10 .23 \end{aligned}$	Continuous Random Variables Normal Distribution Exponential Distribution	[1] Ch. 4.6, 4.7, 4.8
7	$\begin{aligned} & \hline 31.10 .23 \\ & 31.10 .23 \end{aligned}$	Gamma Distribution Joint Distribution Independent Random Variables	[1] Ch. 5.1, 5.2, 5.3
8	$\begin{aligned} & \hline 07.11 .23 \\ & 07.11 .23 \end{aligned}$	Mathematical Expectations and its Properties	[1] Ch. 5.4, 5.5, 5.6
9	$\begin{aligned} & 14.11 .23 \\ & 14.11 .23 \end{aligned}$	Midterm Exam Covariance and Correlation Coefficient Limit Theorems of Probability Theory	$\begin{aligned} & {[1] \text { Ch. 6.1, 6.2, 6.3, 6.4, }} \\ & 6.5 \end{aligned}$
10	$\begin{aligned} & \hline 21.11 .23 \\ & 21.11 .23 \end{aligned}$	Initial Notions of Mathematical Statistics Characteristics of Sample	$\begin{aligned} & \text { [1] Ch. 7.1, 7.2, 7.3, 7.4, } \\ & 7.5,7.6,7.7 \end{aligned}$
11	$\begin{aligned} & 28.11 .23 \\ & 28.11 .23 \end{aligned}$	Using Graphs to Describe data	Quiz-2 (7 pts) [3] Ch. 1
12	$\begin{aligned} & \hline 05.12 .23 \\ & 05.12 .23 \end{aligned}$	Using Numerical Measures to Describe data	[3] Ch. 2, 3
13	$\begin{aligned} & \hline 12.12 .23 \\ & 12.12 .23 \end{aligned}$	One-Sample Tests of Hypothesis	[3] Ch. 4, 5
14	$\begin{aligned} & \hline 19.12 .23 \\ & 19.12 .23 \end{aligned}$	Estimation and Confidence Intervals Hypothesis Testing	$\begin{aligned} & \text { Quiz-3 (7 pts) } \\ & {[3] \text { Ch. } 8,9} \end{aligned}$
15	$\begin{aligned} & \hline 26.12 .23 \\ & 26.12 .23 \end{aligned}$	Hypothesis Tests of Single Population	[3] Ch. 10
	TBA	Final Exam	

This syllabus is a guide for the course and any modifications to it will be announced in advance.

