Identification	Subject	MATH 217, Linear algebra and analytic geometry, 6 ECTS	
	Department	Mathematics	
	Program	Undergraduate	
	Term	Fall, 2023	
	Instructor	Huseynli Ali	
	E-mail:	Ahuseynli@khazar.org	
	Phone:	(+994) 50-667-46-86	
	Classroom/hours	Monday: 11:50-13:20, Thursday: 11:50-13:20	
Prerequisites	Linear algebra and analytic geometry is a second-year, first-semester course. The prerequisite is Calculus 2 course.		
Language	English		
Compulsory/Elective	Required		
Required textbooks and course materials	Core Textbooks: V.V. Konev. Linear Algebra, Vector Algebra and Analytical Geometry,Textbook. Tomsk: TPU Press, 2009, 114 pp.		
Course website			
Course outline	Linear algebra and analytic geometry is a major course at School of Science an Engineering of Khazar University; it plays a role in the understanding of science, engineering, economics, and computer science, among other disciplines. Thi introductory course covers three content areas: Linear Algebra, Vector Algebra an Analytical Geometry. Each part contains basic mathematical conceptions and explain new mathematical terms. Many useful examples and exercises are presented in the textbook. explained and illustrated by examples and exercises.		
Course objectives	Matrix operations, determinants and systems of linear equations, geometrical applications of vector operations, introduction to analytical geometry		
Learning outcomes	By the end of the course the students should be able: 1. To do matrix operations 2. To compute determinants 3. To solve systems of linear equations 4. To solve problems about geometrical applications of vector operations		
Teaching methods	Lecture		x
	Group discussion		x
	Experiential exercise		X
	Course paper		x
Evaluation	Methods ${ }^{\text {a }}$ Date/deadlines		Percentage (\%)
	Midterm Exam		30
	Class Participation		5
	Quizzes		20 (3 quizzes)
	Activity		5
	Final Exam		40
	Total - Preparation for class		100
Policy	Preparatio The structure of th class extremely in introduced in the with them before c lecture, you should end of the chapter	for class course makes your individua portant. The lecture materia xt. Reading the assigned ch ass will greatly assist your und study your notes and work rel ad sample exam questions.	preparation outside on the major po aving some familia f the lecture. After ms and cases from

		Throughout the semester we will also have a large number of revi review sessions will take place during the regularly scheduled clas Attendance Students who do not attend more than 25% of online classes wil take the exam. Quizzes and examinations Quizzes may be given unannounced throughout the term. There no make-up quizzes. Withdrawal (pass/fail) This course strictly follows grading policy of the School Engineering. Thus, a student is normally expected to achieve a m to pass. In case of failure, he/she will be required to repeat the cour term or year. Cheating/plagiarism Cheating or other plagiarism during the Quizzes, Mid-term and will lead to paper cancellation. In this case, the student will aut (0), without any considerations. - Professional behavior guidelines The students shall behave in the way to create favorable academ environment during the class hours. Unauthorized discussi behavior are strictly prohibited. Ethic Use of any electronic devices is prohibited in the classroom. Al turned off before entering class. This is a university policy an reprimanded accordingly!	sessions. These periods. not be allowed to will be of Science and rk of at least 60\% urse the following nal Examinations matically get zero and professional and unethical devices should be violators will be
Tentative Schedule			
B	Date/Day (tentative)	Topics	Textbook/ Assignments
1	$\begin{aligned} & \hline 18.09 .2023 \\ & 21.09 .2023 \end{aligned}$	Matrices: Basic definitions, Matrix operations, Types of matrices, Kronecker Delta Symbol, Properties of Matrix Operations	p. 7-19
2	$\begin{aligned} & 25.09 .2023 \\ & 28.09 .2023 \end{aligned}$	Determinants: Permutations and Transpositions, Determinant General Definition, Properties of Determinants	p. 20-30
3	$\begin{aligned} & \hline 02.10 .2023 \\ & 05.10 .2023 \\ & \hline \end{aligned}$	Determinant Calculation	p. 31-35
4	$\begin{aligned} & 09.10 .2023 \\ & 12.10 .2023 \end{aligned}$	Inverse matrices: Three Lemmas, Theorem of Inverse Matrix, Calculation of Inverse Matrices by Elementary Transformations	p. 36-42

5	$\begin{aligned} & \hline 16.10 .2023 \\ & 19.10 .2023 \\ & \hline \end{aligned}$	Systems of linear equations: Matrix Rank, Basic Concepts, Gaussian Elimination, Homogeneous Systems of Linear Equations	$\begin{aligned} & \text { Quiz (6 pts) } \\ & \text { p. } 43-53 \end{aligned}$
6	$\begin{aligned} & 23.10 .2023 \\ & 26.10 .2023 \end{aligned}$	Cramer's Rule, Cramer's General Rule	p.54-59
7	$\begin{aligned} & 30.10 .2023 \\ & 02.11 .2023 \end{aligned}$	Vectors: Basic Definitions, Geometrical Interpretation	p. 60-65
8	$\begin{aligned} & 06.11 .2023 \\ & 09.11 .2023 \end{aligned}$	Resolution of Vectors into Components, Scalar Product of Vectors Holiday	p. 65-71
9	$\begin{aligned} & \hline 13.11 .2023 \\ & 16.11 .2023 \end{aligned}$	Midterm Exam Vector Product, The Scalar Triple Product,	p. 72-77
10	$\begin{aligned} & \hline 20.11 .2023 \\ & 23.11 .2023 \\ & \hline \end{aligned}$	Transformation of Coordinates Under Rotation of the Coordinate System	p. 79-81
11	$\begin{aligned} & 27.11 .2023 \\ & 30.11 .2023 \end{aligned}$	Straight lines: Equations of lines, Lines in a Plane, Angle Between Two Lines	$\begin{aligned} & \text { Quiz (7 pts) } \\ & \text { p. 82-89 } \end{aligned}$
12	$\begin{aligned} & \hline 04.12 .2023 \\ & 07.12 .2023 \end{aligned}$	Distance From a Point to a Line, Relative Position of Lines	p. 89-90
13	$\begin{aligned} & \hline 11.12 .2023 \\ & 14.12 .2023 \\ & \hline \end{aligned}$	Planes: General Equation of a Plane, Equation of a Plane Passing Through Three Points, Other Forms of Equations of a Plane	p. 91-95
14	$\begin{aligned} & 18.12 .2023 \\ & 21.12 .2023 \end{aligned}$	Angle Between Two Planes, Distance Between a Point and a Plane	p. 95-97
15	$\begin{aligned} & \hline 25.12 .2023 \\ & 28.12 .2023 \end{aligned}$	Relative Position of Planes, Relative Position of a Plane and a Line, Angle Between a Plane and a Line	$\begin{array}{\|l} \hline \text { Quiz (7 pts) } \\ \text { p. } 97-98 \end{array}$
	TBA	Final Exam	

This syllabus is a guide for the course and any modifications to it will be announced in advance.

