Identification	Subject	MATH 102, Calculus 2 A, 6 ECTS	
	Department	Mathematics	
	Program	Undergraduate	
	Term	Fall, 2022	
	Instructor	Rza Mustafayev	
	E-mail:	Rzamustafayev@gmail.com	
	Phone:	(+994 50) 6342616	
	Classroom/hours	Monday: 17:00-18:30, Monday 18:40-20:10	
Prerequisites	MATH 101- Calculus 2A		
Language	English		
Compulsory/Elective	Required		
Required textbooks and course materials	1. George Thomas, et al, Thomas' Calculus: Early Transcendental, 12th edition, Addison-Wesley (2010), (http://libgen.org/) Supplementary book 2. James Stewart, Essential calculus. Early transcendentals, Second Edition, Brooks/Cole (2013) (http://libgen.org/)		
Course outline	In this subject we develop a method to calculate the areas and volumes of very general shapes. The integral is of fundamental importance in statistics, the sciences, and engineering. Here we will introduce three-dimensional coordinate systems and vectors, also. The course concerns the study of integration methods, definite integrals and their applications to evaluation areas, volumes, arc length, areas of surfaces of revolution, vectors, three-dimensional Coordinate Systems, limits and continuity in higher dimensions, partial derivatives.		
Course objectives	The concepts of indefinite and definite integrals, vectors, three dimensiona coordinate systems, limits and continuity in higher dimensions, partial derivatives Application of definite integrals to area, volume and arc length and areas of surfaces of revolution problems.		
Learning outcomes	By the end of the course the students should be able: - To find indefinite and definite integrals of functions - To find area between different simple curves - To apply the fundamental theorem of calculus - Vectors - Three-Dimensional Coordinate Systems - Limits and Continuity in Higher Dimensions, Partial Derivatives		
Teaching methods	Lecture		
	Group discussion		X
	Experiential exercise		x
	Course paper		x
	Others		
Evaluation	Methods	Date/deadlines	Percentage (\%)
	Midterm Exam		30
	Class Participation		5
	Quizzes		20 (2 quizzes)
	Activity		5
	Final Exam		40
	Total		100
Policy	- Preparation for class The structure of this course makes your individual study and preparation outside the class extremely important. The lecture material will focus on the major points introduced in the text. Reading the assigned chapters and having some		

		familiarity with them before class will greatly assist your und lecture. After the lecture, you should study your notes and w problems and cases from the end of the chapter and sample e questions.Throughout the semester we will also have a large sessions. These review sessions will take place during the re class periods. - Attendance Students who do not attend more than 25% of online classes to take the exam. - Withdrawal (pass/fail) This course strictly follows grading policy of the School of S Engineering. Thus, a student is normally expected to achieve 60% to pass. In case of failure, he/she will be required to rep following term or year. - Cheating/plagiarism Cheating or other plagiarism during the Quizzes, Mid-term a Examinations will lead to paper cancellation. In this case, the automatically get zero (0), without any considerations. - Professional behavior guidelines The students shall behave in the way to create favorable acad professional environment during the class hours. Unauthoriz unethical behavior are strictly prohibited. - Participation Every two non-participations of a student removes 1% out of percentage. - Ethics Students should not arrive in late to class. All cell phones must be turned off and stowed away before Use of any electronic devices is not allowed in the classroom be punished accordingly.	standing of the relevant m mber of review arly scheduled ll not be allowed nce and mark of at least the course the Final udent will ic and discussions and s/her total ring class. nd violators will
3	Date/Day (tentative)	Topics	Textbook/ Assignments
1	$\begin{aligned} & 19.09 .22 \\ & 19.09 .22 \end{aligned}$	- Volumes Using Cross-Sections - Volumes Using Cylindrical Shells	Ch. 6.1, 6.2 / not assigned
2	$\begin{aligned} & \hline 26.09 .22 \\ & 26.09 .22 \end{aligned}$	- Arc Length - Practice	Ch. 6.3 / not assigned
3	$\begin{aligned} & \hline 03.10 .22 \\ & 03.10 .22 \end{aligned}$	- Areas of Surfaces of Revolution - Work and Fluid Forces	Ch. 6.4, 6.5/ not assigned
4	$\begin{aligned} & 10.10 .22 \\ & 10.10 .22 \end{aligned}$	- Moments and Centers of Mass - The Logarithm Defined as an Integral	Ch. 6.6, 7.1 / not assigned
5	$\begin{aligned} & \hline 17.10 .22 \\ & 17.10 .22 \end{aligned}$	- Exponential Change and Separable Differential Equations - Hyperbolic Functions	Ch. 7.2, 7.3/ not assigned
6	$\begin{aligned} & \hline 24.10 .22 \\ & 24.10 .22 \end{aligned}$	- Relative Rates of Growth - Integration by Parts	Ch. 7.4,8.1/not assigned Quiz (10 pts)
7	$\begin{array}{\|l\|} \hline 31.10 .22 \\ 31.10 .22 \end{array}$	- Trigonometric Integrals - Midterm Exam	Ch. 8.2 / not assigned
8	07.11.22	- Trigonometric Substitutions	Ch. 8.3,8.4 / not

	07.11.22	- Integration of Rational Functions by Partial Fractions	assigned
9	$\begin{aligned} & 14.11 .22 \\ & 14.11 .22 \end{aligned}$	- Vectors - Three-Dimensional Coordinate Systems	$\begin{gathered} \text { Ch.12.1, 12.2,/ } \\ \text { not assigned } \end{gathered}$
10	$\begin{aligned} & 21.11 .22 \\ & 21.11 .22 \end{aligned}$	- The Dot Product - The Cross Product	Ch.12.3, 12.4/ not assigned
11	$\begin{aligned} & 28.11 .22 \\ & 28.11 .22 \end{aligned}$	- Functions of Several Variables	Ch. 14.1/ not assigned
12	$\begin{aligned} & 05.12 .22 \\ & 05.12 .22 \end{aligned}$	- Limits and Continuity in Higher Dimensions, Partial Derivatives	Ch. 14.1/ not assigned
13	$\begin{aligned} & 12.12 .22 \\ & 12.12 .22 \end{aligned}$	- The Chain Rule Directional Derivatives and Gradient Vectors	Ch. 14.4,14.5/ not assigned Quiz (10 pts)
14	$\begin{aligned} & \hline 19.12 .22 \\ & 19.12 .22 \end{aligned}$	- Tangent Planes and Differentials - Extreme Values and Saddle Points	$\begin{gathered} \text { Ch. 14.6,14.7, } \\ \text { 14.9 /not } \\ \text { assigned } \end{gathered}$
15	$\begin{aligned} & 26.12 .22 \\ & 26.12 .22 \end{aligned}$	- Taylor's Formula for Two Variables	Ch. 14.9 /not assigned
	TBA	Final Exam	

This syllabus is a guide for the course and any modifications to it will be announced in advance.

