Identification	Subject	MATH 225Linear algebra and math	nalysis, 6 ECTS
	Department	Mathematics	
	Program	Undergraduate	
	Term	Fall, 2021	
	Instructor	Vusal Osmanov	
	E-mail:	saracli@mail.ru	
	Phone:	(+994) 70-333-33-48	
	Classroom/hours	Tuesday: 11:50-13:20, Friday: 8:30-10	
	Office hours		
Prerequisites	The prerequisites are high school algebra and trigonometry. Prior experience with calculus is helpful but not necessary.		
Language	English		
Compulsory/Elective	Compulsory		
Description	Linear algebra and analytic geometry is a major course at School of Economics and Management. This introductory course covers two content areas: Linear Algebra and Mathematical analysis. This introductory course covers differentiation, matrix operations, determinants and systems of linear equations.		
Required textbooks and course materials	1. George Thomas, et al, Thomas' Calculus: Early Transcendental, 12th edition, AddisonWesley (2010), (http://libgen.org/) 2. V.V. Konev. Linear Algebra, Vector Algebra and Analytical Geometry,Textbook. Tomsk: TPU Press, 2009, 114 pp . 3. David C. Lay, Linear Algebra and its Applications. $4^{\text {th }}$ edition, 2012 Supplementary book 1. James Stewart,Essential calculus. Early transcendentals, Second Edition, Brooks/Cole (2013) (http://libgen.org/) 2. Poole, D., Linear algebra: a modern introduction. $4^{\text {th }}$ Edition, 2014.		
Course outline	- Concept of functions; trigonometric functions - Limits and continuity - Derivative; Differentiation rules - Matrix algebra - Determinants - Systems of linear equations - Gaussian elimination		
Course objectives	The concepts of limit; tangent to curve; differentiation; chain rule; calculations of determinants, matrix operations, Systems of linear equations, Gaussian eliminatio		
Learning outcomes	Upon successfully completing this course students will be able to: - To find limit of functions at points - To find derivatives of functions - To apply theorems to solve real world problems - Calculations of determinants - Matrix operations - Solve systems of linear equations		
Teaching methods	Lecture		x
	Experiential exercise		
			x
	Assisted lab work		X
	Others		
Evaluation	Methods ${ }^{\text {a }}$ (Date/deadlines		Percentage (\%)
	Midterm Exam		30
	Class Participation		5
	Quizzes (4-5)		20 (3 quizzes)
	Activity		5
	Final Exam		40
	Total \bullet - NO CELL PHONES are allowed during lecture and lab sess		100
Policy	- NO CELL PHO before lecture!	e allowed during lecture and lab sess ent or vibrating mode). This is a univ	ASE turn them off y and violators w

be reprimanded accordingly.

- No late assignments will be accepted without prior arrangement with the instructor for acceptable excuses. Medical and family emergency will be considered on case-by-case basis.
- No late homework will be accepted. Homework is to be completed on an individual basis. Students may discuss homework with classmates, but students are responsible for your own work. If students have consulted classmates, please note the individuals name on the top of students' assignment.
- Quizzes may be given unannounced throughout the term and will count as one homework. There will be no make-up quizzes.
- Students will be divided into groups of 3 individuals for study group sessions and will be assigned some problems to solve together in the class.
- No make-up exams. If students miss an exam, a zero score will be assigned to the missed exam.
- If students should miss class due to personal emergency or medical reasons, please notify the instructor by email immediately. A doctor's note will be required for make-up work.
- Students are responsible for completing the reading assigned from the textbook related to the covered topics and for checking email regularly for important information and announcements related to the course.
- University policy on academic honesty concerning exams and individual work will be strictly enforced.
- BE ON TIME!

Week	Date/Day (Tentativ e)	Topics	Textbook/Assignments
1	$\begin{array}{\|l\|} \hline 01.10 .21 \\ 05.10 .21 \end{array}$	- Rates of Change and Tangents to Curves - Limit of a Function and Limit Laws	Ch.2.1, 2.2
2	$\begin{array}{l\|} \hline 08.10 .21 \\ 12.10 .21 \end{array}$	- The Precise Definition of a Limit - Practice	Ch. 2.3
3	$\begin{aligned} & 15.10 .21 \\ & 19.10 .21 \end{aligned}$	- One-Sided Limits - Continuity	Ch. 2.4, 2.5
4	$\begin{aligned} & 22.10 .21 \\ & 26.10 .21 \end{aligned}$	- Limits Involving Infinity; Asymptotes of Graphs - Tangents and the Derivative at a Point	Ch. 2.6, 3.1,
5	$\begin{aligned} & \hline 29.10 .21 \\ & 02.11 .21 \end{aligned}$	- The Derivative as a Function - Differentiation Rules	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Ch. 3.2, 3.3 Quiz } 1 \text { (6 } \\ \text { pts) } \end{array} \\ \hline \end{array}$
6	$\begin{aligned} & \hline 05.11 .21 \\ & 09.11 .21 \end{aligned}$	- The Derivative as a Rate of Change - Holiday	Ch. 3.4
7	$\begin{aligned} & 12.11 .21 \\ & 16.11 .21 \end{aligned}$	- Derivatives of Trigonometric Functions - The Chain Rule	Ch. 3.5,3.6
8	$\begin{aligned} & \hline 19.11 .21 \\ & 23.11 .21 \end{aligned}$	- Implicit Differentiation - Derivatives of Inverse Functions and Logarithms	Ch. 3.7, 3.8
9	$\begin{aligned} & 26.11 .21 \\ & 30.11 .21 \end{aligned}$	- Inverse Trigonometric Functions	Ch. 3.9
10	$\begin{aligned} & 03.12 .21 \\ & 07.12 .21 \end{aligned}$	- Systems of linear equations: Basic Concepts, Gaussian Elimination, Homogeneous Systems of Linear Equations - Matrices: Basic definitions, Matrix operations, Types of matrices, Kronecker Delta Symbol, Properties of Matrix Operations	
11	$\begin{aligned} & \hline 10.12 .21 \\ & 14.12 .21 \end{aligned}$	- Determinants: Permutations and Transpositions, Determinant General Definition, Properties of Determinants	Quiz-2 (7 pts)
12	$\begin{aligned} & \hline 17.12 .21 \\ & 21.12 .21 \end{aligned}$	- Determinant Calculation - Practice	
13	$\begin{aligned} & \hline 24.12 .21 \\ & 28.12 .21 \end{aligned}$	- Inverse matrices: Three Lemmas, Theorem of Inverse Matrix, Calculation of Inverse Matrices by ElementaryTransformations	
14		- Matrix Rank	Quiz-3 (7 pts)
15		- Cramer's Rule, Cramer's General Rule	
	TBA	Final Exam	

This syllabus is a guide for the course and any modifications to it will be announced in advance.

