SYLLABUS

General	Title and code of subject	CMS 560 Mashing Lagraing				
information	number of credits	CIMS 500 - Machine Learning				
mormation	Department	Computer Science & Engineering				
	Program	MS of A gradits				
	A andomia comostor	M.S.C 4 Creatis				
	Academic semester	Spling, 2025 Bahnam Kiani				
	F-mail:	beimani Kiani				
	Dhono numbor:	UNIAIII @ KIIdZali, Olg				
	I none number.	11 Mahseti Street A71006 Baku Azerbaijan (Noftahilar compus)				
	Lecture room/schedule	Class room: N406				
	Consultations					
Course	English	English				
language						
Type of the	Major					
subject						
additional	1. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts,					
materials	Tools, and Techniq	ues to Build Intelligent Systems 3r	d Edition, Released October			
materials	2022.					
	2. https://stanford.edu/	~shervine/teaching/cs-229/cheatshee	t-supervised-learning			
	3 Online resources: https://www.coursera.org/learn/machine-learning-with-python					
	4 Online resources: https://cs229.stanford.edu/ - CS229: Machine Learning					
	4. Onnie resources. <u>https://cs229.stainord.edu/</u> - Cs229: Machine Leanning					
Teaching	Lecture 15					
methods	Group discussions at seminar	S	15			
Assessment	Components	Date/ Deadline	Percent (%)			
	Project		30%			
	5					
	Attendance		5%			
	Activity		5%			
	Midterm Exam	Midterm Exam	25%			
	Final Exam	Final Exam	35%			
Course	This course introduces the	tools, techniques, and concepts of	Artificial Intelligence. The			
description	course combines theoretical	foundations with practical applicati	ons. Topics include problem			
	solving, principles of know	wledge representation and reasoning	g, and learning methods of			
	artificial intelligence.					
Course	The objective of the course	is to present an overview of artificia	l intelligence (AI) principles			
objectives	and approaches. Develop a basic understanding of the building blocks of AI as presented in					
	terms of intelligent agents: S	Search, Knowledge representation, in	terence, logic, and learning.			
Learning	 By the end of the course 	By the end of the course students should:				
outcomes	 Be able to design a knowledge-based system 					
	 Be familiar with terminology used in this topical area 					
	 Have read and analyzed important historical and current trends in Internet of Things. 					
		-	-			
Rules	Preparation for class					
(Educational	The structure of this course makes your individual study and preparation outside the class					
policy and	extremely important. The lecture material will focus on the major points introduced in					
Denavior)	the text. Reading the assigned chapters and having some familiarity with them before					
	class will greatly assist your understanding of the lecture. After the lecture, you should					
	study your notes and work relevant problems and cases from the end of the chapter and					
	sample exam questions.					
	Throughout the semeste	r we will also have a large number of	review sessions. These			

review sessions will take place during the regularly scheduled class periods.		
• Withdrawal (pass/fail) This course strictly follows grading policy of the School of Economics and Management. Thus, a student is normally expected to achieve a mark of at least 60% to pass. In case of failure, he/she will be required to repeat the course the following term or year.		
• Cheating/plagiarism Cheating or other plagiarism during the Quizzes, Mid-term and Final Examinations will lead to paper cancellation. In this case, the student will automatically get zero (0), without any considerations.		
 Professional behavior guidelines The students shall behave in the way to create favorable academic and professional environment during the class hours. Unauthorized discussions and unethical behavior are strictly prohibited. 		

This program reflects the comprehensive information about the subject and information about any changes will be provided in advance.

Week	Topics	Purpose	Lecture
Week 1.	Introduction to Machine Learning	Introduction and Concepts	Chapter 01
Week 2.	KNN	Classification	Chapter 01
Week 3.	Decision Trees	Classification	Chapter 02
Week 4.	Practical Session	Python	Chapter 02
Week 5.	Random Forest	Classification	Chapter 03
Week 6.	Regression & Regularization	Regression	Chapter 05
Week 7.	Midterm Exam	Classification	Chapter 06
Week 8.	Logstic Regression-Practical Session	Python	Chapter 06
Week 9.	Support Vectore Machine	Classification	Chapter 06
Week 10	Clustring K-Meens	Classification	Chapter 07
Week 11	Dimensionality Reduction - PVC	Classification	Chapter 08
Week 12	Anomaly detection	Optimaization	Chapter 09
Week 13	Recommender Systems	Case Studies	Chapter 10
Week 14	Practical SessionUsing Spark	Python	Chapter 10
Week 15	Reinforcement Learning	Reinforcement Learning	Chapter 11

Final exam	