
Identification Subject CMS 205 Object Oriented Programming, 3KU /6ECTS credits

Department Computer Science

Program Undergraduate

Term Fall, 2023

Instructor Javad Mehri-Tekmeh (PhD)

E-mail: jmehri@khazar.org

Phone: (+994 12) 421 1093 (ext. 266)

Classroom/hours 41 Mehseti str. (Neftchilar campus), Thursday 17:00-18:30,

Friday 17:00-18:30

Prerequisites CMS 106 Fundamentals of Programming,

Language English

Compulsory/Elective Required

Required textbooks

and course materials
Core Textbook:

1. Schildt, Herbert, and Dale John Skrien. 2013. Java Programming: A

Comprehensive Introduction. New York: McGraw-Hill..

2. Deitel, Paul J., and Harvey M. Deitel. 2018. Java How to Program.

Early Objects. New York, NY: Pearson.

Course website This course combines traditional face-to-face classes.

Course outline This course serves as an intermediate-level exploration of Object-Oriented

Programming (OOP) principles and Java programming for students who have prior

programming experience in C or C++. Through hands-on exercises and projects,

students will deepen their understanding of OOP concepts and develop proficiency in

Java programming. The course includes a comprehensive project with five phases to

reinforce learning and two exams to assess student progress.

Course objectives By the end of this course, students should be able to:

 Understand the fundamentals of Object-Oriented Programming (OOP)

principles.

 Demonstrate proficiency in Java programming.

 Apply OOP concepts, such as inheritance, polymorphism, encapsulation, and

abstraction, in practical scenarios.

 Design and implement object-oriented solutions to real-world problems.

 Collaborate effectively on software development projects.

 Debug and troubleshoot Java code.

 Prepare for advanced Java programming and software development courses.

Learning outcomes By successfully completing this course, students will be able to demonstrate the

following outcomes:

 Java Proficiency: Develop a strong command of the Java

programming language, including its syntax, data types, and standard

libraries.

 Object-Oriented Programming: Understand and apply fundamental

Object-Oriented Programming (OOP) concepts, such as encapsulation,

inheritance, polymorphism, and abstraction.

 Problem Solving: Analyze and solve complex problems by designing

and implementing object-oriented solutions using Java.

 Software Development: Gain hands-on experience in software

development by creating Java applications that follow industry best

practices.

 Debugging Skills: Develop the ability to debug and troubleshoot Java

code effectively, identifying and rectifying errors.

 Project Management: Collaborate with peers to complete a multi-

mailto:jmehri@khazar.org

phase software development project, applying project management

skills and best practices.

 File Handling: Demonstrate proficiency in reading and writing files

using Java's input/output (I/O) capabilities.

 Graphical User Interfaces: Create graphical user interfaces (GUIs)

using Java Swing and JavaFX to design user-friendly applications.

 Data Structures: Implement and manipulate data structures provided

by the Java Collections Framework, including lists, sets, and maps.

 Concurrency: Understand multithreading concepts in Java and apply

synchronization techniques to ensure thread safety.

 Advanced Topics: Explore advanced Java topics, such as generics to

write more efficient and maintainable code.

 Software Design Principles: Apply SOLID principles and design

patterns to create well-structured and maintainable software.

 Exam Readiness: Prepare for and perform well in both the midterm

and final exams, demonstrating knowledge retention and problem-

solving skills.

 Effective Communication: Communicate technical concepts and ideas

clearly and concisely, both in written and oral form.

 Critical Thinking: Develop critical thinking skills by evaluating and

selecting appropriate solutions for programming challenges.

 Self-Learning: Cultivate the ability to continue learning ndependently,

keeping up with advancements in Java and software development.

 Ethical Programming: Understand the ethical considerations in

software development, including issues related to privacy, security, and

intellectual property.

 Teamwork: Collaborate effectively in a team environment,

demonstrating professionalism, communication skills, and the ability to

meet project deadlines.

Teaching methods Lecture X

Group discussion X

Experiential exercise X

Evaluation Methods Date/deadlines Percentage (%)

Midterm Exam 25

Project 35

Final Exam 40

Total 100

Policy

Project description

In this project, students will develop a graphical game in Java inspired by classic

Atari-style games. The goal is to create an engaging and interactive gaming

experience while focusing on object-oriented programming principles, concurrency

for smooth gameplay, and the integration of sound effects to enhance the user

experience. The project will be divided into several phases to help students build the

game incrementally.

Game Concept:

The game concept is open-ended, but it should incorporate the following elements:

Graphics: The game must have a graphical interface that includes a player

character (e.g., spaceship, paddle, character) and interactive objects/enemies

(e.g., asteroids, aliens, obstacles).

Gameplay: Define clear objectives and rules for the game. The player should

be able to control the character using keyboard input (e.g., arrow keys) or

mouse interactions. The game should have scoring, levels, and a win/lose

condition.

Concurrency: Implement concurrency in the game to handle multiple game

elements simultaneously. For example, if there are multiple enemies or bullets

on the screen, concurrency should ensure smooth movement and interactions.

Sound Effects: Integrate sound effects to make the game more immersive.

Assign sounds for actions such as shooting, collision, level completion, and

game over.

Project Phases:

Break the project into several phases to guide students through its development:

Phase 1: Game Design

 Define the game concept, objectives, and rules.

 Create a basic (UML) diagram outlining the game's object-

oriented structure.

 Design the graphical elements (sprites) for the player character

and interactive objects/enemies.

 Plan the game's graphical user interface (GUI) layout.

Phase 2: Game Initialization and Graphics

 Set up the game window and initialize the game environment.

 Implement the rendering of the player character and initial

game elements.

 Allow basic player movement and interactions.

Phase 3: Game Logic and Concurrency

 Implement the game's core logic, including scoring, level

progression, and collision detection.

 Introduce concurrency to handle multiple game elements.

 Test and debug the concurrency aspects.

Phase 4: Sound Effects Integration

 Incorporate sound libraries (e.g., Java Sound API) for playing

sound effects.

 Assign appropriate sounds to in-game events.

 Test and fine-tune the sound effects.

Phase 5: Polish and Finalization

 Optimize the game for performance and user experience.

 Implement game over and win conditions.

 Add additional features or enhancements if time allows.

Final Presentation:

At the end of the project, each student or team should present their game to the class.

They should explain their design choices, demonstrate gameplay, and discuss the

challenges they faced during development.

 Preparation for class

The structure of this course emphasizes the importance of independent study and

preparation outside of class. The lecture material will concentrate on the key

points raised in the text. Reading the assigned chapters and becoming acquainted

with them prior to class will aid your understanding of the lecture. Following the

lecture, you should review your notes and work on relevant problems and cases

from the chapter's end, as well as sample exam questions.

 We will also have many review sessions throughout the semester. These review

sessions will take place during the regular class times.

 Withdrawal (pass/fail)
This course strictly adheres to the grading policy of the School of Engineering

and Applied Science. As a result, a student is normally expected to pass with a

grade of at least 60%. In the event of failure, he or she will be required to repeat

the course the following term or year.

 Cheating/plagiarism
Cheating or other plagiarism during the Quizzes, Mid-term and Final

Examinations will lead to paper cancellation. In this case, the student will receive

a zero (0) without further consideration.

 Professional behavior guidelines
During class, students must act in a way that fosters a positive academic and

professional environment. Unauthorized conversations and unethical behavior are

forbidden.

 Ethics

 Students should not arrive in late to class.

 All cell phones must be turned off and stowed away before entering class.

 Use of any electronic devices is not allowed in the classroom and violators will

 be punished accordingly.

Tentative Schedule

W
e

ek

Date/Day

(tentative)

Topics Textbook

1 21-Sep,

22-Sep
Introduction to Java and OOP Principles

 Course overview and expectations

 Introduction to Java and its history

 Basic OOP concepts: classes and objects

Java Development Environment Setup

 Installing Java Development Kit (JDK) and Integrated

Development Environment (IDE)

 Writing and running a simple Java program

Project Description

Ch. 1

2 28-Sep,

29-Sep
Variables and Data Types in Java

 Primitive data types

 Variables, constants, and naming conventions

 Typecasting and conversions

Operators and Expressions

 Arithmetic, relational, logical, and assignment operators

 Expressions and precedence rules

Ch. 2

3 5-Oct,

6-Oct
Control Structures in Java

 Conditional statements: if, else-if, switch

Ch. 3, 5

 Looping constructs: for, while, do-while

Arrays and Strings

 Declaring and manipulating arrays

 String manipulation in Java

4 12-Oct,

13-Oct
Object-Oriented Programming Concepts

 Classes and objects in detail

 Constructors and methods

 Encapsulation and access modifiers

Inheritance and Polymorphism

 Inheritance and its advantages

 Polymorphism and method overriding

Ch. 4, 6-7

5 19-Oct,

20-Oct
Phase 1 due: Game Design

Abstract Classes and Interfaces

 Abstract classes and methods

 Interfaces and multiple inheritance

Exception Handling

 Understanding exceptions

 Try-catch blocks and exception propagation

Ch. 8, 10

6 26-Oct,

27-Oct
GUI Programming with Swing

 Introduction to Java Swing

 Creating graphical user interfaces

Ch. 17-20

7 2-Nov,

3-Nov
Phase 2 due: Game Initialization and Graphics

File Handling in Java

 Reading and writing files in Java

 Working with streams

Ch. 11

8 9-Nov,

10-Nov
Collections Framework

 Overview of Java Collections Framework

 Lists, sets, and maps

Ch. 13

9 16-Nov,

17,-Nov
Review for Midterm exam & Exercise.

Midterm Exam.

10 23-Nov,

24-Nov
Threads and Concurrency

 Multithreading in Java

 Synchronization and thread safety

Ch. 12

11 30-Nov,

1-Dec
Generics

 Introduction to generics

 Generic classes and methods

Ch. 14

12 7-Dec,

8-Dec
Phase 3 due: Game Logic and Concurrency

Introduction to JavaFX

 Basics of JavaFX

 Building JavaFX applications
Event Handling in JavaFX

 Handling events in JavaFX applications

 Event-driven programming

[2] Ch. 12-13

This syllabus is a guide for the course and any modifications to it will be announced in advance.

13 14-Dec,

15-Dec
JavaFX Graphics and Multimedia [2] Ch. 22

14 21-Dec,

22-Dec
Phase 4 due: Sound Effects Integration

Review and Project Demonstration

15 28-Dec,

29-Dec
Phase 5 due: Polish and Finalization

Final Exam Review

 TBA
Final Exam

