Identification	Subject	MATH 217 Probability Theory and Mathematical Statistics 3KU (6 ECTS)
	Department	Mathematics
	Program	Undergraduate
	Term	Fall, 2022
	Instructor	Leyla Mustafayeva
	E-mail:	mustafayevaleyla@khazar.org
	Classroom/hours	Monday: 13:40-15:10, Wednesday: 13:40-15:10
Prerequisites	MATH 215 Linear Algebra and Mathematical Analysis (A)	
Language	English	
Compulsory/Elective	Compulsory	
Required textbooks and course materials	1. "A First Course in Probability" by Sheldon M. Ross, Seventh Edition, 576 pages Published May 28th 2005 by Prentice Hall 2. Basic Statistics for Business and Economics, Douglas A. Lind, William G. Marchal, Samuel A. Wathen, Published by McGrawHill Education, 2013 3. Montgomery, Douglas C., Introduction to Statistical Quality Control (6th ed.), Wiley, New York, 2008. Supplementary book 1. Applied Statistics and Probability for Engineers, Douglas C. Montgomery, George C. Runger, John Wiley \& Sons, 2003 2. Statistics for Business and Economics, Paul Newbold, William L. Carlson, Betty M. Thorne 3. Gnedenko B.V. Theory of Probability, 1996 4. B.V.Gnedenko and A.Ya.Khinchin. An Elementary Introduction to the Theory of Probability, New York, 1992	
Course outline	- Combinato - Axioms of - Condition - Total Prob - Bernoulli - Random V - Discrete D - Continuou - Joint Distribu - Mathemati - Variance - Covarianc - Limit The - Initial Not - Characteri - Estimation - Hypothesi	Analysis ability bability and Independence y and Bayes Formulas na le and Distribution utions tribution xpectations and its Properties Properties Correlation Coefficient s of Probability Theory of Mathematical Statistics of Sample Confidence Intervals ing
Course objectives	Probability Theory Variables, Sampli Estimation and Co	ditional Probability and Independence, Random Methods and Limit Theorems, Describing Data, Intervals, Hypothesis Testing.
Learning outcomes	Upon successfully - Express th counting. - Calculate	leting this course students will be able to: ncepts of factorial and the basic principal of probability of simple events, compound events,

	complementary events. - Solve the problems about conditional probability and Bayes' theorem. - Express the features of random variables. - Calculate the expected value, variance and standard deviation of a random variable. - Solve the problems about continuous distributions. - Define central limit theorem problems. - Calculate and interpret confidence Interval. - Conduct and interpret hypothesis tests.		
Teaching methods	Lecture		x
	Assisted work		x
	Assisted lab work		X
Evaluation	Methods	Date/deadlines	Percentage (\%)
	Midterm Exam		30
	Class Attendance		5
	Quizzes		20 (3 quizzes)
	Activity		5
	Final Exam		40
	Total		100
Policy	- NO CELL PHONES are allowed during lecture and lab sessions. PLEASE turn them off before lecture! (Not silent or vibrating mode). This is a university policy and violators will be reprimanded accordingly. - No late assignments will be accepted without prior arrangement with the instructor for acceptable excuses. Medical and family emergency will be considered on case-by-case basis. - No late homework will be accepted. Homework is to be completed on an individual basis. Students may discuss homework with classmates, but students are responsible for your own work. If students have consulted classmates, please note the individuals name on the top of students' assignment. - Quizzes may be given unannounced throughout the term and will count as one homework. There will be no make-up quizzes. - Students will be divided into groups of 3 individuals for study group sessions and will be assigned some problems to solve together in the class. - No make-up exams. If students miss an exam, a zero score will be assigned to the missed exam. - If students should miss class due to personal emergency or medical reasons, please notify the instructor by email immediately. A doctor's note will be required for make-up work. - Students are responsible for completing the reading assigned from the textbook related to the covered topics and for checking email regularly for important information and announcements related to the course. - University policy on academic honesty concerning exams and individual work will be strictly enforced. - BE ON TIME!		

Week	Date/Day (Tentative)	Topics	Textbook/Assignments
1	$\begin{array}{\|l\|} \hline 19.09 .22 \\ 21.09 .22 \\ \hline \end{array}$	Probability Sample Space, Events, Probability measure The Fundamental Principle of counting Permutations Combinations	$\begin{aligned} & \text { [1] Ch. 1.1, 1.2, 1.3, } \\ & \text { 1.4, 1.5 } \end{aligned}$
2	$\begin{array}{\|l\|} \hline 26.09 .22 \\ 28.09 .22 \\ \hline \end{array}$	Probability of Intersection, Union, and Complementary Event Probability and Counting Techniques	$\begin{aligned} & {[1] \text { Ch. 2.1, 2.2,2.3, 2.4, }} \\ & 2.5 \end{aligned}$
3	$\begin{array}{\|l\|} \hline 03.10 .22 \\ 05.10 .22 \\ \hline \end{array}$	Conditional Probabilities. Posterior Probabilities: Bayes' Formula Independent Events	[1] Ch. 3.1, 3.2, 3.3, 3.4
4	$\begin{aligned} & 10.10 .22 \\ & 12.10 .22 \end{aligned}$	Random Variables Probability Mass Function and Cumulative Distribution Function	$\begin{aligned} & \text { [1] Ch. 4.1, 4.2, } \\ & \text { 4.3,4.4, 4.5 } \end{aligned}$
5	$\begin{aligned} & 17.10 .22 \\ & 19.10 .22 \end{aligned}$	Bernoulli Trials and Binomial Distributions The Expected Value and Variance of the Binomial Distribution	
6	$\begin{array}{\|l\|} \hline 24.10 .22 \\ 26.10 .22 \\ \hline \end{array}$	Continuous Random Variables Normal Distribution Exponential Distribution	$\begin{aligned} & \text { [1] Ch. 4.6, 4.7, } 4.8 \\ & \text { Quiz } 1 \text { (6 pts) } \end{aligned}$
7	$\begin{array}{\|l\|} \hline 31.10 .22 \\ 02.11 .22 \\ \hline \end{array}$	Gamma Distribution Joint Distribution Independent Random Variables	[1] Ch. 5.1, 5.2, 5.3
8	$\begin{array}{\|l\|} \hline 07.11 .22 \\ 09.11 .22 \\ \hline \end{array}$	Mathematical Expectations and its Properties Holiday	[1] Ch. 5.4, 5.5, 5.6
9	$\begin{aligned} & 14.11 .22 \\ & 16.11 .22 \end{aligned}$	Midterm Exam Covariance and Correlation Coefficient Limit Theorems of Probability Theory	$\begin{aligned} & \text { [1] Ch. 6.1, 6.2, 6.3, } \\ & \text { 6.4, } 6.5 \end{aligned}$
10	$\begin{array}{\|l\|} \hline 21.11 .22 \\ 23.11 .22 \\ \hline \end{array}$	Initial Notions of Mathematical Statistics Characteristics of Sample	$\begin{aligned} & \text { [1] Ch. 7.1, 7.2, 7.3, } \\ & \text { 7.4, 7.5, 7.6, 7.7 } \end{aligned}$
11	$\begin{array}{\|l\|} \hline 28.11 .22 \\ 30.11 .22 \\ \hline \end{array}$	Using Graphs to Describe data	Quiz-2 (7 pts) [3] Ch. 1
12	$\begin{array}{\|l\|} \hline 05.12 .22 \\ 07.12 .22 \\ \hline \end{array}$	Using Numerical Measures to Describe data	[3] Ch. 2, 3
13	$\begin{aligned} & \hline 12.12 .22 \\ & 14.12 .22 \end{aligned}$	One-Sample Tests of Hypothesis	
14	$\begin{array}{\|l\|} \hline 19.12 .22 \\ 21.12 .22 \\ \hline \end{array}$	Estimation and Confidence Intervals Hypothesis Testing	$\begin{aligned} & \text { Quiz-3 (7 pts) } \\ & \text { [3] Ch. 8, } 9 \end{aligned}$
15	$\begin{array}{\|l\|} \hline 26.12 .22 \\ 28.12 .22 \\ \hline \end{array}$	Hypothesis Tests of Single Population	[3] Ch. 10
	TBA	Final Exam	

