<table>
<thead>
<tr>
<th>Identification</th>
<th>Subject</th>
<th>MATH 101 Calculus-1, 6 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Department</td>
<td>Mathematics</td>
<td></td>
</tr>
<tr>
<td>Program</td>
<td>Undergraduate</td>
<td></td>
</tr>
<tr>
<td>Term</td>
<td>Spring, 2020</td>
<td></td>
</tr>
<tr>
<td>Instructor</td>
<td>Javanshir Azizov</td>
<td></td>
</tr>
<tr>
<td>E-mail:</td>
<td><a href="mailto:azizov.javanshir@gmail.com">azizov.javanshir@gmail.com</a></td>
<td></td>
</tr>
<tr>
<td>Phone:</td>
<td>(+994)50 753 99 09</td>
<td></td>
</tr>
<tr>
<td>Classroom/hours</td>
<td>Calculus 1 Monday 17:00, Wednesday 17:00</td>
<td></td>
</tr>
<tr>
<td>Prerequisites</td>
<td>Single Variable Calculus is a first-year, first-semester course. The prerequisites are high school algebra and trigonometry. Prior experience with calculus is helpful but not necessary.</td>
<td></td>
</tr>
<tr>
<td>Language</td>
<td>English</td>
<td></td>
</tr>
<tr>
<td>Compulsory/Elective</td>
<td>Required</td>
<td></td>
</tr>
<tr>
<td>Required textbooks and course materials</td>
<td>Core Textbooks:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Supplementary book</td>
<td></td>
</tr>
<tr>
<td>Course website</td>
<td>Calculus is a foundational course at School of Science and Engineering of Khazar University; it plays an important role in the understanding of science, engineering, economics, and computer science, among other disciplines. This introductory calculus course covers differentiation and initial techniques of integration of functions of one variable, with applications. Topics include:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Concept of functions; trigonometric functions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Limits and continuity</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Derivative; Differentiation rules</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Applications of derivative to investigation of extremes and graphing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Antiderivative</td>
<td></td>
</tr>
<tr>
<td>Course outline</td>
<td>The concepts of limit; tangent to curve; differentiation; chain rule; extreme values of a function and concavity of a curve</td>
<td></td>
</tr>
<tr>
<td>Course objectives</td>
<td>By the end of the course the students should be able:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• To find limit of functions at points</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• To find derivatives of functions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• To apply theorems to solve real world problems</td>
<td></td>
</tr>
<tr>
<td>Teaching methods</td>
<td>Lecture x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Group discussion x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Experiential exercise x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Simulation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Case analysis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Course paper x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Others</td>
<td></td>
</tr>
<tr>
<td>Evaluation</td>
<td>Methods</td>
<td>Date/deadlines</td>
</tr>
<tr>
<td>Midterm Exam</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Case studies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Activity</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Class Participation  5
Quizzes  20 (4 quizzes)
Project
Laboratory work
Final Exam  40
Others
Total  100

Policy

- **Preparation for class**
  
The structure of this course makes your individual study and preparation outside the class extremely important. The lecture material will focus on the major points introduced in the text. Reading the assigned chapters and having some familiarity with them before class will greatly assist your understanding of the lecture. After the lecture, you should study your notes and work relevant problems and cases from the end of the chapter and sample exam questions. Throughout the semester we will also have a large number of review sessions. These review sessions will take place during the regularly scheduled class periods.

- **Quizzes and examinations**
  
  Quizzes may be given unannounced throughout the term. There will be no make-up quizzes.
  
  No make-up exams. If students miss an exam, a zero score will be assigned to the missed exam.

- **Withdrawal (pass/fail)**

  This course strictly follows grading policy of the School of Science and Engineering. Thus, a student is normally expected to achieve a mark of at least 60% to pass. In case of failure, he/she will be required to repeat the course the following term or year.

- **Cheating/plagiarism**

  Cheating or other plagiarism during the Quizzes, Mid-term and Final Examinations will lead to paper cancellation. In this case, the student will automatically get zero (0), without any considerations.

- **Professional behavior guidelines**

  The students shall behave in the way to create favorable academic and professional environment during the class hours. Unauthorized discussions and unethical behavior are strictly prohibited.

- **Ethic**

  Use of any electronic devices is prohibited in the classroom. All devices should be turned off before entering class. This is a university policy and violators will be reprimanded accordingly!

  Students should not arrive in late to class!

<table>
<thead>
<tr>
<th>Week</th>
<th>Date/Day (tentative)</th>
<th>Topics</th>
<th>Textbook/ Assignments</th>
</tr>
</thead>
</table>
| 1    | 10.02.20             | • Rates of Change and Tangents to Curves  
                           • Limit of a Function and Limit Laws | Ch.2.1, 2.2 |
<table>
<thead>
<tr>
<th>Date</th>
<th>Topics</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.02.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>17.02.20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The Precise Definition of a Limit</td>
<td>Ch. 2.3</td>
</tr>
<tr>
<td></td>
<td>Practice</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>24.02.20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>One-Sided Limits</td>
<td>Ch. 2.4, 2.5</td>
</tr>
<tr>
<td></td>
<td>Continuity</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>02.03.20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Limits Involving Infinity; Asymptotes of Graphs</td>
<td>Ch.2.6,3.1, Quiz (5 pts)</td>
</tr>
<tr>
<td></td>
<td>Tangents and the Derivative at a Point</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>09.03.20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Women’s day</td>
<td>Ch. 3.2, 3.3</td>
</tr>
<tr>
<td></td>
<td>The Derivative as a Function, Differentiation Rules</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>16.03.20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The Derivative as a Rate of Change</td>
<td>Ch. 3.4, 3.5</td>
</tr>
<tr>
<td></td>
<td>Derivatives of Trigonometric Functions</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>23.03.20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Novruz Holiday</td>
<td>Ch.3.6, Quiz (5 pts)</td>
</tr>
<tr>
<td></td>
<td>The Chain Rule</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>30.03.20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Implicit Differentiation</td>
<td>Ch. 3.7, 3.8</td>
</tr>
<tr>
<td></td>
<td>Derivatives of Inverse Functions and Logarithms</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>06.04.20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Midterm Exam</td>
<td>Ch. 3.9</td>
</tr>
<tr>
<td></td>
<td>Inverse Trigonometric Functions</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>13.04.20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Related Rates</td>
<td>Ch. 3.10,3.11</td>
</tr>
<tr>
<td></td>
<td>Linearization and Differentials</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>20.04.20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Extreme Values of Functions</td>
<td>Ch.,4.1, 4.2</td>
</tr>
<tr>
<td></td>
<td>The Mean Value Theorem</td>
<td>Quiz (5 pts)</td>
</tr>
<tr>
<td>12</td>
<td>27.04.20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Monotonic Functions and the First Derivative Test</td>
<td>Ch., 4.3,4.4</td>
</tr>
<tr>
<td></td>
<td>Concavity and Curve Sketching</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>04.05.20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Indeterminate Forms and L’Hôpital’s Rule</td>
<td>Ch. 4.5, 4.8</td>
</tr>
<tr>
<td></td>
<td>Antiderivatives</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>11.05.20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Area and Estimating with Finite Sums, Sigma Notation and Limits of Finite Sums</td>
<td>Ch. 5.1, 5.2,5.3</td>
</tr>
<tr>
<td></td>
<td>The Definite Integral</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>18.05.20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The Fundamental Theorem of Calculus</td>
<td>Ch., 5.4, 5.5</td>
</tr>
<tr>
<td></td>
<td>Indefinite Integrals and the Substitution Method</td>
<td>Quiz (5 pts)</td>
</tr>
<tr>
<td>16</td>
<td>25.05.20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ramadan holiday</td>
<td>Ch. 5.6</td>
</tr>
<tr>
<td></td>
<td>Substitution and Area Between Curves</td>
<td></td>
</tr>
<tr>
<td>TBA</td>
<td>Final Exam</td>
<td></td>
</tr>
</tbody>
</table>

This syllabus is a guide for the course and any modifications to it will be announced in advance.